2025/5/1-2 postQM2025

流体・動的模型(理論)

Hydro and Dynamical model

Shin-ei Fujii Sophia University

Topics

- Causality and stability in hydrodynamics (L. Gavassino)
- 3D Bayesian analysis (A. Mankolli, T. S. Domingues)
- Nuclear structure in high-energy collisions (G. H. Nijs, C. Shen)
- Rapidity scan with DCCI at LHC energy (S. Fujii)

Causality and stability in hydrodynamics

Based on: Lorenzo Gavassino (parallel 12, Tue)

What is causality?

Alice cannot use the fluid to send information to Bob faster than light

- Alice perturbs the fluid at her location
- 2. The induced changes travel inside an "acoustic cone"
- 3. This cone should be contained inside the light cone

$$w \leq c \; (=1)$$

w: characteristic velocity (local velocity of information)c: speed of light

L. Gavassino

Bemfica-Disconzi-Noronha (2019)

Causality violation in hydrodynamic model L. Gavassino

Red: acausal Purple: unknown Blue: causal

Plumberg et al. (2022)

HADRON

PHYSICS GROUP

Causality violations are not rare...

What happens?

What happens?

v: fluid velocity

(1) Acausal (w > 1) but small vSpecifically, wv < 1

(2) Acausal (w > 1) and large vSpecifically, $wv \ge 1$

What happens?

Excessive acausality ($wv \ge 1$) induces instability!!

A simple example

L. Gavassino

Assume Israel-Stewart eq. with bulk pressure

 $(\tau_{\Pi}D+1)\Pi = -\zeta\theta$ $D = u^{\mu}\partial_{\mu}$ $\theta = \partial_{\mu}u^{\mu}$

Numerical "stabilization" due to an inconsistent treatment of the derivatives in the dissipative equations

Example with MUSIC

L. Gavassino

Numerical solution with correct initialization

- Causality violations originate instabilities in the fluid description
- The codes do not see these instabilities

We are solving hydrodynamics beyond its applicable regime!

3D Bayesian analysis

Based on: Andi Mankolli (parallel 6, Thu) Thigao Siqueira Domingues (poster 2, Tue)

New constraints on model parameters

SOPHIA HADRON HADRON PHYSICS GROUP

- Constraints from large and small, symmetric and asymmetric systems (Au+Au and d+Au)
- Constraints from wide range of measurements at forward/backward rapidities (global energy conservation)
- Constraints from causality in hydrodynamic simulations

New constraints on model parameters

SOPHIA HADRON PHYSICS GROUP

- Constraints from large and small, symmetric and asymmetric systems (Au+Au and d+Au)
- Constraints from wide range of measurements at forward/backward rapidities (global energy conservation)
- Constraints from causality in hydrodynamic simulations

3D Initial State and Hydrodynamics

A. Mankolli

Calibrated model parameters

Parameter	Collision Stage	Prior Range
$y_{loss,2}$	Initial State	[0,2]
$y_{loss,4}$	Initial State	$\left[y_{loss,2},\!4 ight]$
$y_{loss,6}$	Initial State	$\left[y_{loss,4},\!6 ight]$
$\sigma_{y_{loss}}$	Initial State	[0,1]
$lpha_{rem}$	Initial State	[0,1]
Shadowing Factor	Initial State	[0,1]
$ au_{form}$ Mean	Initial State	[0.2,1]
$B_G \ [1/{ m GeV}^2]$	Initial State	[2,25]
String Source σ_x [fm]	Initial State	[0.1, 0.5]
String Source σ_{η}	Initial State	[0.1, 0.8]
String Trans. Shift Frac.	Initial State	[0,1]
$\frac{\eta}{s} T_{kink} $ [GeV]	Hydro	[0.13, 0.3]
$\frac{\eta}{s}$ low-T slope	Hydro	[-2,1]
$\frac{\eta}{s}$ high-T slope	Hydro	[-1,2]
$\frac{\eta}{s}$ at kink	Hydro	[0.01, 0.2]
$\frac{\zeta}{s}$ max	Hydro	[0.01, 0.2]
$\frac{\zeta}{2} T_{peak}$ [GeV]	Hydro	[0.12, 0.3]
$\frac{\zeta}{\zeta}$ width	Hydro	[0.025, 0.15]
$\frac{\zeta}{2} \stackrel{s}{\lambda}$ assym.	Hydro	[-0.8,0.6]
EPS Switch $[GeV/fm^3]$	Particlization	[0.1, 0.6]

• 11 parameters for initial state

A. Mankolli

- 8 parameters for viscosities
- 1 parameter for particlization

Experimental data

ſ	Au-Au 200 GeV			d-Au 200 GeV
2		• $dN_{ch}/d\eta(\eta)$ PHOBOS		• $dN_{ch}/d\eta(\eta)$ PHOBOS
	• $v_2(\eta)$ STAR	• v ₂ (cent) STAR		• $dN_{ch}/d\eta(\eta)$ PHENIX
2	• $v_2(\eta)$ PHOBOS	- V (cent) STAR	• $dN_{ch}/d\eta(\eta)$ BRAHMS	• $v_2(p_T)$ PHENIX
-	$m{\cdot}$ $\left< p_T \right>$ π , k STAR		• $r_2(\eta)$ STAR	• $v_2(p_T)$ STAR
	• $\langle p_T \rangle$ k, p PHENIX	• $v_2(p_T)$ PHENIX	• $r_3(\eta)$ STAR	• $v_{0}(n)$ PHENIX
		• $v_2(p_T)$ STAR	• $dE_T/d\eta$ (cent) PHENIX	
	• $\langle p_T \rangle$ p STAR	• $v_3(p_T)$ PHENIX		• $v_3(p_T)$ STAR
	• $\langle p_T \rangle \pi$ PHENIX	• $v_4(p_T)$ PHENIX		• $v_3(p_T)$ PHENIX

• $dE_T/d\eta$ (cent) PHENIX

Observables from calibrated model

SOPHIA HADRON

PHYSICS GROUP

A. Mankolli

Observables from calibrated model

A. Mankolli

SOPHIA HADRON PHYSICS GROUP

Constraints from forward/backward

Initial State

• The strongest constraint in the beam rapidity region,

 $y_{\rm beam}(\sqrt{s_{\rm NN}} = 200 \,{\rm GeV}) = 5.36$

A. Mankolli

- Significant rapidity loss constraints provided by midrapidity data
- Rapidity loss becomes less sensitive to y_{init} when forward/backward data is used

Constraints from forward/backward

A. Mankolli

Viscosity

- Viscosity posteriors shifted to larger values
- Preference for finite bulk viscosity at low T

Constraints from different system

- Somewhat consistent individual system posteriors
- Stronger indication of finite viscosity from Au+Au

A. Mankolli

New constraints on model parameters

SOPHIA HADRON HADRON PHYSICS GROUP

- Constraints from large and small, symmetric and asymmetric systems (Au+Au and d+Au)
- Constraints from wide range of measurements at forward/backward rapidities (global energy conservation)
- Constraints from causality in hydrodynamic simulations

3D dynamical model with causality

26

3D dynamical model

- T_RENTo [49] to generate the system's initial energy density;
- Free-streaming of the initial T_RENTo profile using [50];
- Viscous hydrodynamic evolution using the MUSIC code [51];
- Particlization based on the Cooper-Frye formula using the frzout code [52];
- Boltzmann evolution and decays of hadrons using the UrQMD code [53].

Necessary conditions for causality

$$\begin{split} n_{1} &\equiv \frac{2}{C_{\eta}} + \frac{\lambda_{\pi\Pi}}{\tau_{\pi}} \frac{\Pi}{\varepsilon + P} - \frac{\tau_{\pi\pi}}{2\tau_{\pi}} \frac{|\Lambda_{1}|}{\varepsilon + P} \ge 0, \quad (8a) \\ n_{2} &\equiv 1 - \frac{1}{C_{\eta}} + \left(1 - \frac{\lambda_{\pi\Pi}}{2\tau_{\pi}}\right) \frac{\Pi}{\varepsilon + P} - \frac{\tau_{\pi\pi}}{4\tau_{\pi}} \frac{\Lambda_{3}}{\varepsilon + P} \ge 0, \quad (8b) \\ n_{3} &\equiv \frac{1}{C_{\eta}} + \frac{\lambda_{\pi\Pi}}{2\tau_{\pi}} \frac{\Pi}{\varepsilon + P} - \frac{\tau_{\pi\pi}}{4\tau_{\pi}} \frac{\Lambda_{3}}{\varepsilon + P} \ge 0, \quad (8c) \\ n_{4} &\equiv 1 - \frac{1}{C_{\eta}} + \left(1 - \frac{\lambda_{\pi\Pi}}{2\tau_{\pi}}\right) \frac{\Pi}{\varepsilon + P} \\ &+ \left(1 - \frac{\tau_{\pi\pi}}{4\tau_{\pi}}\right) \frac{\Lambda_{a}}{\varepsilon + P} - \frac{\tau_{\pi\pi}}{4\tau_{\pi}} \frac{\Lambda_{d}}{\varepsilon + P} \ge 0, \quad (a \neq d) \\ (8d) \\ n_{5} &\equiv c_{s}^{2} + \frac{4}{3} \frac{1}{C_{\eta}} + \frac{1}{C_{\zeta}} + \left(\frac{2}{3} \frac{\lambda_{\pi\Pi}}{\tau_{\pi}} + \frac{\delta_{\Pi\Pi}}{\tau_{\Pi}} + c_{s}^{2}\right) \frac{\Pi}{\varepsilon + P} \\ &+ \left(\frac{3\delta_{\pi\pi} + \tau_{\pi\pi}}{3\tau_{\pi}} + \frac{\lambda_{\Pi\pi}}{\tau_{\Pi}} + c_{s}^{2}\right) \frac{\Lambda_{1}}{\varepsilon + P} \ge 0, \quad (8e) \\ 6 &\equiv 1 - \left(c_{s}^{2} + \frac{4}{3} \frac{1}{C_{\eta}} + \frac{1}{C_{\zeta}}\right) \\ &+ \left(1 - \frac{2}{3} \frac{\lambda_{\pi\Pi}}{\tau_{\pi}} - \frac{\delta_{\Pi\Pi}}{\tau_{\Pi}} - c_{s}^{2}\right) \frac{\Lambda_{3}}{\varepsilon + P} \ge 0. \quad (8f) \end{split}$$

T. S. Domingues *et al.*, Phys. Rev. C **110**, 064904 (2024)

Impose causality constraint

T. S. Domingues

 Constraints on prior from the causality

Posterior distributions of parameters

Initial Stage

 $\tau \epsilon(\mathbf{x}_{\perp}) = N \left(\frac{T_A^p(\mathbf{x}_{\perp}) + T_B^p(\mathbf{x}_{\perp})}{2} \right)^{1/p} \qquad \tau_{\rm fs} = \tau_R \left(\frac{\langle \bar{\epsilon} \rangle}{\bar{\epsilon}_B} \right)^{1/p}$

T. S. Domingues

Transport Coefficient

$$\frac{\zeta}{s}(T) = rac{(\zeta/s)_{\max}\Lambda^2}{\Lambda^2 + (T - T_{\zeta})^2},$$

$$T\tau_{\pi}(T) = \frac{b_{\pi}}{s} \frac{\eta}{s}(T)$$

Particlization

 T_{sw} : switching temperature

Visible effects from causality constraint! HADRON

PHYSICS GROUP

Posterior distributions of viscosities

T. S. Domingues

- Visible effects on viscosities from causality analysis
- Preference for small shear and bulk viscosities at low T

Observable posterior

T. S. Domingues

 Even after imposing causality cutoff, there is no discrepancy with unconstrained posterior

Nuclear structure in high-energy collisions

Based on: Chun Shen (parallel 22, Tue) Govert Nijs (plenary 6, Thu)

Nuclear deformation

The ground state configurations of heavy nuclei can be described by generalized Woods-Saxon profile with intrinsic deformations:

$$\rho(r,\theta,\phi) = \frac{\rho_0}{1 + \exp[(r - R(\theta,\phi))/a_0]}$$

 $R(\theta,\phi) = R_0 \left[1 + \frac{\beta_2}{\beta_2} \left(\cos \gamma Y_{2,0}(\theta,\phi) + \sin \gamma Y_{2,2}(\theta,\phi) \right) + \frac{\beta_3}{\gamma_{3,0}} (\theta,\phi) + \frac{\beta_4}{\gamma_{4,0}} (\theta,\phi) \right]$

• Observable ratios $\frac{\mathcal{O}_{X+X}}{\mathcal{O}_{y+y}}$ cancel effects from QGP evolution

Imaging nuclear shapes

• Nuclear deformation

• Nuclear structure of light nuclei ¹⁶0

Constraining nuclear deformation

²³⁸U vs. ¹⁹⁷Au

C. Shen

238₁₁

GROUP

The ratio of elliptic flow in central U+U and Au+Au favors

 $\beta_{2,U} = 0.247$ $a_{\rm U} = 0.6 \, {\rm fm}$

W. Ryssens, G. Giacalone, B. Schenke and C. Shen, Phys. Rev. Lett. 130, 212302 (2023)

Nuclear deformation of ¹²⁹Xe

- No sensitivity to hydrodynamic evolution (viscosities)
- Strong sensitivity to the β_2 deformation

GROUP

C. Shen

Nuclear deformation of ¹²⁹Xe

• Dynamical model explains the experimental data well

Imaging nuclear shapes

• Nuclear deformation

• Nuclear structure of light nuclei ¹⁶0

Predictions for ${}^{16}0 + {}^{16}0$ at the LHC

- Predictions using the parameters obtained by Bayesian analysis
- Different nuclear structure models give slightly different but consistent answers

GROUF

G. Nijs

Predictions for ${}^{16}O + {}^{16}O$ at the LHC

C. Shen

SOPHIA HADRON PHYSICS GROUP

¹⁶O vs. ²⁰⁸Pb

H. Mantysaari, B. Schenke, C. Shen and W. Zhao, Phys. Rev. C110, 054913 (2024)

- Little sensitivity to hydrodynamic evolution
- Sizeable sensitivity to the sub-nucleonic fluctuations and structure

Imaging nuclear shapes

• Nuclear deformation

• Nuclear structure of light nuclei ¹⁶0

- Ne looks like O, but with an extra α -cluster on top
- Central NeNe/OO v_2 ratio should have a large signal

Central NeNe/OO v_2 ratio

G. Nijs

Giacalone, Bally, Nijs, Shen et al., 2402.05995

- Central NeNe/OO v_2 ratio has a large enhancement
- Geometric uncertainties indeed largely cancel

Opportunity at LHCb SMOG experiment

- Strong impact of the shape of Ne (~20% enhancement)
- The signal survives up to large centralities

PHYSICS GROUP

C. Shen

Rapidity scan with DCCI at LHC energy

Based on: Shin-ei Fujii (poster 2, Tue)

Rapidity Scan

Expected high baryon number density in forward rapidity in high-energy collisions

M. Li and J. I. Kapusta, Phys. Rev. C 99, 014906 (2019)

Rapidity Scan

Access high baryon chemical potential region in the QCD phase diagram

Complementary study of QCD phase diagram by BES and Rapidity Scan!

QCD phase diagram and experiments

S. Fujii

Baryon chemical potential $\mu_{\rm B}$

How large baryon chemical potential is achieved as <u>equilibrated</u> matter in forward rapidity?

To answer the question, models must describe...

- Equilibrium and non-equilibrium components separately
- Fluidization (equilibration) of baryon number
- Hydrodynamic evolution of baryon number density

Dynamical Core-Corona Initialization model

Y. Kanakubo et al., Phys. Rev. C 105, 024905 (2022)

S. Fujii

PHYSICS

GROUP

Source terms

Energy-momentum source term

Y. Kanakubo *et al.*, Phys. Rev. C **105**, 024905 (2022)

 $\partial_{\mu} T_{\text{fluid}}^{\mu\nu} = j^{\nu}$ $j^{\nu} = -\sum_{i}^{N_{\text{parton}}} \frac{dp_{i}^{\nu}(t)}{dt} G(\boldsymbol{x} - \boldsymbol{x}_{i}(t))$ $p_{i}^{\nu}: \text{Four-momentum of } i\text{th parton}$

G: Gaussian function x_i : Position of *i*th parton

When *i*th parton deposits all energy = dead parton

New!

 $\rho_{\rm I}$

$$\partial_{\mu} N_{\text{fluid, I}}^{\mu} = \rho_{\text{I}}$$
 I: B, Q, S

Conserved charge source term

$$= -\sum_{j}^{N_{\text{dead}}} \frac{dN_{j,\text{I}}}{dt} G\left(\boldsymbol{x} - \boldsymbol{x}_{j}(t)\right)$$

 $N_{j,I}$: Charge I of *j*th dead parton

S. Fujii

Phenomenological fluidization rate per particle in core-corona picture

Low p_{T} / Dense

Deposition of conserved charges into the fluid

Equilibrated baryon number in CORE

Profiles of CORE

S. Fujii

Pb+Pb 2.76 TeV, *b* = 2.46 fm, Single event

Temperature (longitudinal)

T [GeV]

- Gradual formation of the core through the energy-momentum source term
- Alongside the fluid formation, the core expands and cools down due to the hydrodynamic evolution

0.35			
0.3	Fluid formation + Fluid evolution		
0.25			
0.2	Dominant in	Dominant in	
0.15	early times	later times	

Temperature (transverse)

Profiles of CORE

S. Fujii

GROUP

Pb+Pb 2.76 TeV, *b* = 2.46 fm, Single event

Baryon number density (longitudinal)_{n_B [fm⁻³]}

• Large <u>equilibrated</u> baryon number density in forward rapidities $5 \leq |\eta_s| \leq 10$

cf.) $y_{\text{beam}}(\sqrt{s_{\text{NN}}} = 2.76 \text{ TeV}) \approx 8$

- Large <u>fluctuations</u> of baryon number density in midrapidity
 - → Negative $n_{\rm B}$ regions appear

Freezeout hypersurface

• Large fluctuations of baryon chemical potentials even in midrapidity $-0.2 \leq \mu_{\rm B} \leq 0.2 \text{ GeV}$

S. Fujii

- Typical baryon chemical potentials increase as go forward rapidity
- Significantly large baryon chemical potentials in forward rapidities

 $\mu_{\rm B} \lesssim 0.6~{\rm GeV}$

Averaged freezeout hypersurface

GROUP

S. Fujii

Backups

Other interesting topics of hydrodynamics

- Stochastic hydrodynamics (N. Mullins, D. Teaney)
- Spin hydrodynamics (D. Wagner)
- Hydrodynamics of heavy quarks (F. Capellino)
- Magneto hydrodynamics (A. Dash)
- Hydrodynamic description of initial stage (A. Kirchner)

Numerical stabilization

L. Gavassino

In the equation of motion for the stress $(\tau_{\Pi}\dot{\Pi} + \Pi = -\zeta \partial_{\mu}u^{\mu})$, the velocity gradient is treated as a source, but it contains time derivatives. This requires a two-step initialization ($\Psi_n \equiv$ "variables at time-step $n\Delta t$ "): $\Psi_{-1} =$ "Something" $\Psi_0 =$ "Initial data"

Current codes set $\Psi_{-1} = \Psi_0$, which is inconsistent with the equations of motion $\partial_t \Psi = F(\Psi, \partial_j \Psi)$. We should set $\Psi_{-1} \approx \Psi_0 - \Delta t F(\Psi_0, \partial_j \Psi_0)$

When we do it, the code crashes as it should! (Details are code-dependent)

Nuclear structure from isobar collisions

C. Shen

Dependence on nuclear structure of ¹⁶0

Xin-Li Zhao(poster1, Tue)

X. Zhao

- The square configuration shows the largest v_2
- The W-S configuration shows the smallest v₂
- Overestimate the STAR data

GROUP

Changing signatures of α -clustering

$$\rho(v_n^2, \langle p_T \rangle) = \frac{\left\langle \hat{\delta} v_n^2 \hat{\delta} \langle p_T \rangle \right\rangle}{\sqrt{\left\langle \left(\hat{\delta} v_n^2 \right)^2 \right\rangle \left\langle \left(\hat{\delta} \langle p_T \rangle \right)^2 \right\rangle}}$$

C. Shen

The ratios of $v_2 - p_T$ correlation show sensitivity to nuclear configurations from different low-energy nuclear theory calculations

GROUP

NLEFT and PGCM

Giacalone, Bally, Nijs, Shen et al., 2402.05995

• Nuclei from both models look quite similar