

Quarkonia and EM probe

Satoshi Yano Hiroshima University

POST-QM2022 @ Nagoya University 30 APRIL, 2022

Quarkonia

Quarkonia in QGP

stage of the collision

3

Nuclear modification factor of prompt-J/ ψ

- R_{AA} of prompt-J/ ψ has been measured with full statistics in PbPb @ 5.02 TeV
 - Increasing RAA at low p_T compatible with a regeneration model
- Regeneration effect is dominant from > 200 GeV collision energy

Elliptic flow of J/ψ

- $J/\psi v^2$ at RHIC is consistent with 0, but that of LHC has it
- The result indicates the importance of regeneration effect on v2
- How about $J/\psi v^2$ at high p_T at RHIC?

Nuclear modification factor of ψ(2S)

- First observation of low- $p_T \Psi(2S)$ in PbPb collisions has been done
- Larger R_{AA} suppression w.r.t J/ $\psi\,$ has been reported
- Regeneration effect can be seen at low- p_{T}

Elliptic and triangular flow of $\psi(2S)$

- $\psi(2S) \vee 2$ is larger than that of J/ψ in wide p_T range
- $\psi(2S) v3$ is consistent with zero
- The difference may come from the contribution of regeneration

Nuclear modification factor of Y family

- First measurement of Y(3S) nuclear modification factor has been reported
- Clear hierarchy has been observed, Y(1S) > Y(2S) > Y(3S)

Beauty quark thermalization in QGP

100% thermalization

30% thermalization

- SHM is extended to beauty quark
- Beauty quark with 30% thermalization describes Y(1S) and Y(2S)

Beauty quark thermalization with double ratio of Y(3S)/ Y(2S)

• The result of the Y(3S)/Y(2S) double ratio indicates more thermalization?

EM probe Thermal photon and dilepton

Thermal photon and dilepton

- The measurement of medium temperature is accessed through thermal radiation
- Real photon p_T spectrum has information about the matter temperature w/ blue shift effect
- The dilepton mass spectrum shape is affected by the medium temperature w/o blue shift effect

Non-prompt direct photon extraction

- Non-prompt direct photon has been measured by extracting pQCD photon
 - Non-prompt direct photon = direct photon pQCD photon
- The higher p_T photon is expected to be emitted at earlier stage

Temperature for non-prompt direct photon

- The effective temperature at higher- p_T is larger than the lower- p_T region
 - $T_{eff}^{high-pT}$ = 376 MeV T_{eff}^{low-pT} = 260 MeV
- Pre-equilibrium contribution is described by the model ($p_T > 3$ GeV/c)
- The overall yield is underestimated especially below 2 GeV/c (QGP photon dominance region)

LMR and IMR thermal dilepton

- Similar temperatures in LMR at three different collision energies T ~ 170 MeV has been observed
- Hotter QGP creation at RHIC than SPS is suggested by the IMR result
 - RHIC achieves $T_{RHIC} \sim 300 \text{ MeV}$
- Low mass thermal dilepton is emitted from the hadronic phase, around phase transition

Thermal dilepton at the LHC

- Virtual photon result is consistent with the real photon method
- The effective temperature has been measured as T_{eff} = 305 MeV with large uncertainty (± 197 MeV)

Photon yield puzzle

- Discrepancy between PHENIX and STAR experiment was reported
- ALICE points appear to be consistent with PHENIX trend

ρ/ω peak suppression

HADES AuAu @ 2.55 GeV

- HADES has observed the unexpected p/ ω peak suppression in AuAu collisions @ 2.55 GeV at lowp_T region
- The similar behavior in high multiplicity pp collisions at 13 TeV has been reported
- Both measurement are similar multiplicity bin $dN/d\eta > 30$

Summary

- Quarkonia
 - Precise excited state results have been reported
 - + $\psi(2S)\,R_{AA}$ is smaller than J/ψ
 - + $\psi(2S)\,v_2$ is smaller than J/ψ
 - $R_{AA} Y(1S) > Y(2S) > Y(3S)$ sequential suppression has been observed
 - 30 % beauty quark thermalization is estimated by Y(1S) and Y(2S) measurement, but Y(2S) and Y(3S) results indicate more thermalization
- EM probe
 - Measurement of direct photon at early stage has been reported
 - Early stage thermal photon has been measured in real photon and virtual photon method
 - Virtual photon has been measured at LHC energy

Back up

Quarkonia

Bound state of ccbar and bbbar

- Charmonium (ccbar state)
 - J/ψ : M = 3.096GeV/c²
 - Ψ(2S): M = 3.686GeV/c²
- Bottomonium (bbbar state)
 - Y(1S): 9.46 GeV/c²
 - Y(2S): 10.023 GeV/c²
 - Y(3S): 10.3552 GeV/c²
- Heavy quark hadron fraction
 - Quarkonium: ~1%
 - Open heavy quark meson: ~90%
 - Open heavy quark baryon: ~9%

state	J/ψ	χ_c	ψ'	Υ	χ_b	Υ'	χ_b'	Υ"
mass [GeV]	3.10	3.53	3.68	9.46	9.99	10.02	10.26	10.36
$\Delta E \; [{ m GeV}]$	0.64	0.20	0.05	1.10	0.67	0.54	0.31	0.20
radius [fm]	0.25	0.36	0.45	0.14	0.22	0.28	0.34	0.39

 $(m_c = 1.25 \,\, {
m GeV}, \, m_b = 4.65 \,\, {
m GeV}, \, \sqrt{\sigma} = 0.445 \,\, {
m GeV}, \, lpha = \pi/12)$

Comover interaction

- Quarkonium is produced in initial stage of collisions
 - Hadronization at very early formation time
 - $\tau_{\psi(2S)} \sim 0.35 \text{ fm/c}$
 - Dense condition even in small collision system
 - Possible to see the effect in small collision system (w/o QGP)
- Break-up quarkonium with passing soft particles
 - Depending on the radius
 - Sequential break-up in J/ ψ , ψ (2S), Y(1S) , Y(2S) , Y(3S)...

ATLAS

Bottomonium family suppression Comparison with pPb

• Stronger suppression w.r.t. pPb collisions has been observed

Photon source

Open heavy flavor

What is heavy flavor (HF)?

- Heavy flavor (charm & beauty)
 - Mass: m_c (~1.3 GeV/c²), m_b (~4.5 GeV/c²) >> Λ_{QCD} (~0.2 GeV)
- Produced initial hard scattering processes
 - Accurate interpretation by pQCD
- Short formation time
 - $\tau \sim 1/2m_q \sim 0.07 \text{ fm/c} < \text{QGP} (0.1 1 \text{ fm/c})$
- Long life time
 - D⁰: τc~ 120μm, Λ+_c: τc~ 60μm
 - B^0 : τc~500μm , Λ^0_b : τc~ 440μm

Key features of using HF to investigate QGP properties

- Ideal probe for a tomography of QGP
 - Produced at only initial stage of collisions
 - Conservation of the number of HF quark

HF is one of the cleanest probe!

Energy loss

- Passing partons lose their energy via elastic scattering and gluon radiation
 - Depending on
 - Color charge (Casimir factor)
 - Quark mass (Dead cone effect)
 - Path length in medium
 - $\Delta E_{loss}(g) > \Delta E_{loss}(u,d,s) > \Delta E_{loss}(c) > \Delta E_{loss}(b)$

Gluon radiation Gluon emission angle $\theta \propto M/E$ Sensitive to transport coefficient: $q=\mu^2/\lambda$

Azimuthal anisotropy

- Participation in medium collective motion
 - Pushed by the medium as "foreign object"
 - Sensitive to the spatial diffusion coefficienct
- Path-length dependence of energy loss
 - Much energy loss with passing long distance in medium

Coalescence

- Enhancement of baryon/meson ratio w.r.t to pp collisions
 - In vacuum, two quark pairs should be produced at the same time to make a baryon
 - p:π ~ 0.2:1
- Enhancement of strangeness hadron w.r.t non-strangeness hadron
 - Quark pair production probability depends on quark mass
 - uu : dd : ss : cc ~ 1 : 1 : 0.3 : 10⁻¹¹

How to measure HFs?

- Full reconstruction
 - − $D^0 \rightarrow K^- \pi^+$ (BR: 3.95%)
 - $B^+ \rightarrow J/\psi K^+ \rightarrow \mu^+ \mu^- K^+ (BR: 0.1\%)$
- Partial decay product measurement
 - Hadron decay channel
 - B⁺ → J/ψK⁺
 - Semi-leptonic decay channel
 - D⁰ → e⁺ X (BR: 6.49%)
 - B⁺ → e⁺ X (BR: 10.99%)
 - B⁺ → D⁰ X (BR: 79%)

Main observation

- Nuclear modification factor (*R*_{AA}):
 - Comparison of particle production in PbPb collisions with that in pp scaled by the number of collisions (N_{col})

If no medium effects are present $\rightarrow R_{AA} \sim 1$ If medium effects are present $\rightarrow R_{AA} \neq 1$

- Elliptic flow (v₂):
 - Study azimuthal distribution of produced particle with respect to the reaction plane (ψ_{RP})

$$N(\phi) \propto 1+2 \sum v_n \cos\{n(\phi - \psi_{RP})\}$$

If the collectivity effects are present $\rightarrow v_2 > 0$ (low- p_T) If the path-length effects are present $\rightarrow v_2 > 0$ (high- p_T)

Nuclear modification factor R_{AA} Light v.s. Charm

- At low- p_T (<10 GeV/_c): ΔE_{loss} (light) > ΔE_{loss} (c)
 - Indicating smaller energy loss in charm hadron
- At high- p_T (>10 GeV/_c): ΔE_{loss} (light) ~ ΔE_{loss} (c)
 - Indicating the same energy loss mechanism in light and charm hadron

Nuclear modification factor R_{AA} Charm v.s. Beauty

- All p_T (<20 GeV/c): $\Delta E_{loss}(c) > \Delta E_{loss}(b)$
 - Indicating smaller energy loss in beauty hadron

Nuclear modification factor R_{AA} Meson v.s. Baryon Charm with Strangeness v.s. Charm

- At $low-p_T$ (<10 GeV/_c): Baryon > Meson, D_s > D(non-strangeness)
 - Indicating coalescence contribution
- At high- p_T (>10 GeV/_c): Baryon = Meson, $D_s = D(non-strangeness)$
 - Indicating the same production mechanism

Elliptic flow (v2) Light v.s. Charm

- Almost the same v_2 as light hadron
 - Contribution from thermalized charm?
- Flattened and compatible with light hadron at high- p_T (> 7GeV/c)
 - Energy loss path-length dependence?

Elliptic flow (v2) Charm v.s. Beauty

- Positive beauty v₂!
 - Different shape from the other particle (no significant p_T dependence)
- Beauty v_2 compatible with charm v_2 at high- p_T
 - Energy loss path-length dependence?

Comparison with models

• There are many models, and they describe the trend well