

Quarkonia and EM probe

Satoshi Yano Hiroshima University

POST-QM2022 @ Nagoya University 30 APRIL, 2022

Quarkonia

Quarkonia in QGP

• QQ_bar pairs are produced in only the initial stage of the collision

Nuclear modification factor of prompt-J/ψ

- R_{AA} of prompt-J/ ψ has been measured with full statistics in PbPb @ 5.02 TeV
	- $-$ Increasing RAA at low p_T compatible with a regeneration model
- Regeneration effect is dominant from > 200 GeV collision energy

Elliptic flow of J/ψ

- J/ψ v2 at RHIC is consistent with 0, but that of LHC has it
- The result indicates the importance of regeneration effect on v2
- How about J/ψ v2 at high p_T at RHIC?

Nuclear modification factor of ψ(2S)

- First observation of low-*p_T* Ψ(2S) in PbPb collisions has been done
- Larger R_{AA} suppression w.r.t J/ ψ has been reported
- Regeneration effect can be seen at $low-p_T$

Elliptic and triangular flow of ψ(2S)

- $\psi(2S)$ v2 is larger than that of J/ ψ in wide p_T range
- $\psi(2S)$ v3 is consistent with zero
- The difference may come from the contribution of regeneration

Nuclear modification factor of Υ family

- First measurement of Υ(3S) nuclear modification factor has been reported
- Clear hierarchy has been observed, $Y(1S) > Y(2S) > Y(3S)$

Beauty quark thermalization in QGP

100% thermalization 30% thermalization

- SHM is extended to beauty quark
- Beauty quark with 30% thermalization describes Υ(1S) and Υ(2S)

Beauty quark thermalization with double ratio of Υ(3S)/ Υ(2S)

• The result of the Y(3S)/Y(2S) double ratio indicates more thermalization?

EM probe Thermal photon and dilepton

Thermal photon and dilepton

- The measurement of medium temperature is accessed through thermal radiation
- Real photon p_T spectrum has information about the matter temperature w/ blue shift effect
- The dilepton mass spectrum shape is affected by the medium temperature w/o blue shift effect

Non-prompt direct photon extraction

- Non-prompt direct photon has been measured by extracting pQCD photon
	- Non-prompt direct photon = direct photon pQCD photon
- The higher p_T photon is expected to be emitted at earlier stage

Temperature for non-prompt direct photon

- The effective temperature at higher- p_T is larger than the lower- p_T region
	- $-$ T_{eff}high-pT = 376 MeV T_{eff}low-pT = 260 MeV
- Fre-equilibrium contribution is described by the model ($p_T > 3$ GeV/c)
- The overall yield is underestimated especially below 2 GeV/c (QGP photon dominance region)

LMR and IMR thermal dilepton

- Similar temperatures in LMR at three different collision energies $T \sim 170$ MeV has been observed
- Hotter QGP creation at RHIC than SPS is suggested by the IMR result
	- RHIC achieves $T_{RHIC} \sim 300$ MeV
- Low mass thermal dilepton is emitted from the hadronic phase, around phase transition

Thermal dilepton at the LHC

- Virtual photon result is consistent with the real photon method
- The effective temperature has been measured as T_{eff} = 305 MeV with large uncertainty (\pm 197 MeV)

Photon yield puzzle

- Discrepancy between PHENIX and STAR experiment was reported
- ALICE points appear to be consistent with PHENIX trend

ρ/ω peak suppression

HADES AuAu @ 2.55 GeV

- HADES has observed the unexpected ρ/ω peak suppression in AuAu collisions @ 2.55 GeV at low p_T region
- The similar behavior in high multiplicity pp collisions at 13 TeV has been reported
- Both measurement are similar multiplicity bin dN/dη > 30

Summary

- Quarkonia
	- Precise excited state results have been reported
		- $\psi(2S)$ R_{AA} is smaller than J/ ψ
		- $\psi(2S)$ v₂ is smaller than J/ψ
		- R_{AA} Y(1S) > Y(2S) > Y(3S) sequential suppression has been observed
		- 30 % beauty quark thermalization is estimated by Υ(1S) and Υ(2S) measurement, but Υ(2S) and Υ(3S) results indicate more thermalization
- EM probe
	- Measurement of direct photon at early stage has been reported
		- Early stage thermal photon has been measured in real photon and virtual photon method
		- Virtual photon has been measured at LHC energy

Back up

Quarkonia

• Bound state of ccbar and bbbar

- Charmonium (ccbar state)
	- J/ψ : M = 3.096GeV/c²
	- $\Psi(2S)$: M = 3.686GeV/c²
- Bottomonium (bbbar state)
	- Υ(1S): 9.46 GeV/c²
	- Y(2S): 10.023 GeV/c²
	- Y(3S): 10.3552 GeV/c²

- Quarkonium: ~1%
- Open heavy quark meson: ~90%
- Open heavy quark baryon: ~9%

 $(m_c = 1.25 \text{ GeV}, m_b = 4.65 \text{ GeV}, \sqrt{\sigma} = 0.445 \text{ GeV}, \alpha = \pi/12)$

Comover interaction

- Quarkonium is produced in initial stage of collisions
	- Hadronization at very early formation time
		- $T_{\psi(2S)} \sim 0.35$ fm/c
	- Dense condition even in small collision system
		- **Possible to see the effect in small collision system (w/o QGP)**
- Break-up quarkonium with passing soft particles
	- Depending on the radius
	- Sequential break-up in J/ψ, ψ(2S), Υ(1S) , Υ(2S) , Υ(3S)…

ATLAS

Bottomonium family suppression Comparison with pPb

• Stronger suppression w.r.t. pPb collisions has been observed

PR 889 (2020) 1-106

Photon source

29

Open heavy flavor

What is heavy flavor (HF)?

- Heavy flavor (charm & beauty)
	- Mass: m_c (~1.3 GeV/c²), m_b (~4.5 GeV/c²) >> Λ_{QCD} (~0.2 GeV)
- Produced initial hard scattering processes
	- Accurate interpretation by pQCD
- Short formation time
	- $-$ τ~1/2m_q ~ 0.07 fm/c < QGP (0.1 1 fm/c)
- Long life time
	- D0: τ*c*~ 120μm, Λ⁺ c: τ*c*~ 60μm
	- B0: τ*c*~500μm , Λ⁰ b: τ*c*~ 440μm

Key features of using HF to investigate QGP properties

- Ideal probe for a tomography of QGP
	- Produced at only initial stage of collisions
	- Conservation of the number of HF quark

HF is one of the cleanest probe!

Energy loss

- Passing partons lose their energy via elastic scattering and gluon radiation
	- Depending on
		- Color charge (Casimir factor)
		- Quark mass (Dead cone effect)
		- Path length in medium
	- $-\Delta E_{loss}(g)$ > $\Delta E_{loss}(u,d,s)$ > $\Delta E_{loss}(c)$ > $\Delta E_{loss}(b)$

Gluon radiation Gluon emission angle $\theta \propto M/E$ Sensitive to transport coefficient: $q = \mu^2/\lambda$

Azimuthal anisotropy

- Participation in medium collective motion
	- Pushed by the medium as "foreign object"
	- Sensitive to the spatial diffusion coefficienct
- Path-length dependence of energy loss
	- Much energy loss with passing long distance in medium

Coalescence

- Enhancement of baryon/meson ratio w.r.t to pp collisions
	- In vacuum, two quark pairs should be produced at the same time to make a baryon
		- $p:\pi \sim 0.2:1$
- Enhancement of strangeness hadron w.r.t non-strangeness hadron
	- Quark pair production probability depends on quark mass
		- uu : dd : ss : cc ~ 1 : 1 : 0.3 : 10⁻¹¹

How to measure HFs?

- Full reconstruction
	- $-$ D⁰ \rightarrow K·π⁺ (BR: 3.95%)
	- B+ → J/ψK+ → μ+μ·K+(BR: 0.1%)
- Partial decay product measurement
	- Hadron decay channel
		- B⁺ → **J/w**K⁺
	- Semi-leptonic decay channel
		- $D^0 \to e^+ \times (BR: 6.49\%)$
		- $B^+ \to e^+ \times (BR: 10.99\%)$
		- \cdot B⁺ \rightarrow **D⁰**X (BR: 79%)

Main observation

- Nuclear modification factor (R_{AA}) :
	- Comparison of particle production in PbPb collisions with that in pp scaled by the number of collisions (N_{col})

If no medium effects are present \rightarrow R_{AA} ~ 1 If medium effects are present \rightarrow R_{AA} \neq 1

- Elliptic flow (v_2) :
	- Study azimuthal distribution of produced particle with respect to the reaction plane (ψ_{RP})

$$
N(\phi) \propto 1 + 2 \sum v_n \cos\{n(\phi - \psi_{RP})\}
$$

If the collectivity effects are present $\rightarrow v_2 > 0$ (low- p_T) If the path-length effects are present $\rightarrow v_2 > 0$ (high- p_T)

Nuclear modification factor R_{AA} **Light v.s. Charm**

- At $\text{low-}p_{\text{T}}$ (<10 GeV/_c): $\Delta E_{\text{loss}}(\text{light})$ > $\Delta E_{\text{loss}}(c)$
	- Indicating smaller energy loss in charm hadron
- At high- p_T (>10 GeV/_c): ΔE_{loss} (light) ~ $\Delta E_{loss}(c)$
	- Indicating the same energy loss mechanism in light and charm hadron

Nuclear modification factor R_{AA} **Charm v.s. Beauty**

- All p_T (<20 GeV/*c*): $\Delta E_{loss}(c) > \Delta E_{loss}(b)$
	- Indicating smaller energy loss in beauty hadron

Nuclear modification factor R_{AA} Meson v.s. Baryon Charm with Strangeness v.s. Charm

- At $\text{low-}p_{\text{T}}(\text{&}10 \text{ GeV}/\text{)}$: **Baryon > Meson, D_s > D(non-strangeness)**
	- Indicating coalescence contribution
- At high- p_T (>10 GeV/_c): **Baryon = Meson,** D_s **= D(non-strangeness)**
	- Indicating the same production mechanism

Elliptic flow (v2) Light v.s. Charm

- Almost the same v_2 as light hadron
	- Contribution from thermalized charm?
- Flattened and compatible with light hadron at high- p_T (> 7GeV/*c*)
	- Energy loss path-length dependence?

Elliptic flow (v2) Charm v.s. Beauty

- Positive beauty $v_2!$
	- Different shape from the other particle (no significant p_T dependence)
- Beauty v_2 compatible with charm v_2 at high- p_T
	- Energy loss path-length dependence?

Comparison with models

• There are many models, and they describe the trend well