pp, pA, AA 衝突のダイナミックスは 同時に理解したか? **QGP** シミュレーションの理論の現状

- イントロダクション
- Final state interactions

 (流体 vs パートン・ハドロンカスケード)
- Initial state dynamics (non-QGP) (カラーグラス凝縮 vs ストリング相互作用)

第29回 Heavy Ion Pub 研究会 広島大学 2019年10月25日

クォーク・グルーオン・プラズマの作り方

Consider a collision of heavy ion such as Gold nucleus Au which has 118 neutrons and 79 protons. Au+Au at RHIC(2000) Pb+Pb at LHC(2011)

これまでAGS-E802/859実験において 28Siまでの軽い原子核ビームを用いて 行なってきたが、 1992年、BNLのAGS加速器において 核子当たり11-12 GeV/cの197Au 原子核ビームが利用可能となった。 AGS-E866実験 志垣氏D論(1995) (世界で初めての重イオン衝突)

CERNでは86年より核子あたり200GeV の硫黄ビーム、94年より核子あたり 160GeVの鉛ビームの加速が行われた。

<u>Separation of Initial and final state</u> interactions at RHIC/LHC

Au + Au collisions

• 集団フロー(collective flow) (横運動量分布,楕円フロー)

$$\frac{dN}{d\phi} \propto 1 + \sum_{n} 2v_n \cos[n(\phi - \Phi_n)]$$

ジェットエネルギーロス

C.Gale, et.al PRL110(2013)012302

Pb+Pb at 2.76 TeV

Ann.Rev.Nucl.Part.Sci. 68 (2018)

小さい領域で(1fm)、短い時間、粒子の数も少ないので、 陽子-陽子,陽子-原子核衝突では、QGPはできないと 思われてきた。 (pAではジェントクエンチングがない)

ppでも流体が使える可能性の議論はあった。 Landau (1953) Tevatron E735, MiniMax QGP search in p+p pbar + p collisions P.Levai and B.Muller, PRL67 (1991)1519

<u>小さい系でも集団効果があるような結果がでた</u>

- Long-range rapidity correlations (Ridge)
- Elliptic flow (v2), triangular flow (v3)
- Mass ordering: <pt> and v2
- Strangeness enhancement

Jet-quenching has not been reported yet in small systems.

final state effects

 流体模型 superSONIC (Romatschke) iEBE-VISHNU (Ohio) IP-sat. + CYM + MUSIC + UrQMD (Brookhaven) EPOS3 (SUBATECH) MC-Glauber+ hydro (Bozek,Krakow) dynamical initialization (Sophia) TRENTO+Hydro+UrQMD (Nagoya)

パートンカスケード, ハドロンカスケード AMPT, BAMPS

V2 at RHIC

PHENIX Phys.Rev. C97 (2018) 064904

V2 from superSONIC hydro model at LHC

R.D. Weller and P. Romatschke, Phys.Lett. B774 (2017) 351-356

Elliptic flow from EPOS3 in p-Pb at 5.02TeV

v2の粒子の質量依存性も 粘性流体で説明できる。

K. Werner, et. al. Phys.Rev.Lett. 112 (2014) no.23, 232301

<u>Multiplicity dependence of <pt> in pp</u> <u>collisions at 7 TeV</u>

K. Werner, et. al. Phys.Rev. C89 (2014) no.6, 064903

<u>Enhancement of multi-strange</u> <u>from Pytthia8+hydro</u>

Y. Kanakubo, et.al. PTEP 2018 (2018)121D01, nucl-th1910.10556

AMPT (A multi phase transport) modelでもいろいろ再現できるらしい。

HIJING → string melting

- \rightarrow ZPC (parton cascade)
- \rightarrow coalescence \rightarrow ART (hadron transport)

L.He, T.Edomonds, Z.Lin, F.Liu, Dolnar, F.Wang, MPLB 753 (2016) 506

<u>AMPTのパートン散乱は流体的でない?</u>

AMPTでどのくらいパートンが衝突しているのかを見てみると、1回も衝突しないで、 フリーズアウトするパートンが沢山いる。

 \rightarrow anisotropic parton escape mechanism

We design a **Random-** ϕ **Test** (destroy collective flow but keep the anisotropic shape):

Random:

 v_2 from the Random- ϕ Test purely comes from escape

 $\langle v_2 \rangle_{random-\phi} / \langle v_2 \rangle_{normal}$ ratio ~ fraction from pure escape:

	dAu@200GeV	pPb@5TeV	AuAu@200GeV	PbPb@2.76TeV
	b=0 fm	b=0 fm	b=6.6-8.1 fm	b=8 fm
u/d	93%(all quarks)	72.9%	65.6%	42.5%

Zi-Wei Lin (2019)

E.Levin anL.V.Gribovd M.G.Ryskin, '83 A. H. Mueller and J. Qiu, '86 J. P. Blaizot and A. H. Mueller,'87

Structure of the hadrons at high energies

Hard partons

Non-abelian Weiszacker-Williams filed

Cloud of Small x partons

Classical Yang-Mills fields

カラーグラス凝縮: ハドロン,原子核の高エネルギー極限における姿 板倉 数記 日本物理学会誌 2004 年 59 巻 3 号 p. 148-156 https://doi.org/10.11316/butsuri1946.59.148

Initial state effects

Azimuthal correlation strength

Event multiplicity for fixed system size

- Glasma graph + jet graph (Dusling and Venugopalan 2013)
- Classical Yang-Mills (BNL group)
- CYM+Pythia mass ordering of <pt> and v2 B. Schenke, et. al.
 Phys.Rev.Lett. 117 (2016) no.16, 162301

- Color reconnection A.O.Velasquez, et.al.PRL111(2013)04001
- Radiating antennas M. Gyulassy, et.al, PRD90(2014)054025
- Target field anisotropy A.Kovner et.al. PRD83(2011)034017
- Collectivity from interference B.Block, et.al. JHEP 1712(2017)074
- Color dipole orientation bias E.Iancu et.al. PRD95(2017)094003
- Elliptic gluon distributions Y.Hagiwara, et.al. PLB771(2017)374

IP-Glasma + Classical Yang-Mills

B. Schenke, S. Schlichting, R. Venugopalan, Phys.Lett.B747 (2015)76

Phenix, Nature (2018) "Creation of quark-gluon plasma droplets with three distinct geometries

How to discriminate models?

Hydrodynamical models predictions:

$$v_2^{p+{\rm Au}} < v_2^{d+{\rm Au}} \approx v_2^{^3{\rm He}+{\rm Au}} \quad v_3^{p+{\rm Au}} \approx v_3^{d+{\rm Au}} < v_2^{^3{\rm He}+{\rm Au}}$$
 21

Color fields in the domain of 1/Qs in CGC

Color correlation length = $1/Q_s = 0.1-0.2$ fm

$$v_n^{p+\mathrm{Au}} > v_n^{d+\mathrm{Au}} > v_n^{^3\mathrm{He}+\mathrm{Au}}$$

for large transverse kick $p_{\perp} > Q_s$

 $v_{2,3}(p_{\perp})$ would be identical for different small system at fixed N_{ch} at large N_{ch} Phenix, Nature (2018) "Creation of quark-gluon plasma droplets with three distinct geometries

How to discriminate models?

Hydrodynamics

$$v_2^{p+\mathrm{Au}} < v_2^{d+\mathrm{Au}} \approx v_2^{^{3}\mathrm{He}+\mathrm{Au}}$$
$$v_3^{p+\mathrm{Au}} \approx v_3^{d+\mathrm{Au}} < v_2^{^{3}\mathrm{He}+\mathrm{Au}}$$

Color Glass Condensate

$$v_n^{p+\mathrm{Au}} > v_n^{d+\mathrm{Au}} > v_n^{^3\mathrm{He}+\mathrm{Au}}$$

Phenix, Nature (2018)

Comparison of models

流体模型は実験をよく再現している。

Color Glass Condensate (MSTV)

Mark Mace, Vladimir V. Skokov, Prithwish Tribedy, and Raju Venugopalan Phys. Rev. Lett. 121, 052301; Hep-ph1901.10506

<u>MSTV</u>

Mark Mace, Vladimir V. Skokov, Prithwish Tribedy, and Raju Venugopalan Hep-ph1901.10506

CGC (MSTV)

Mark Mace, Vladimir V. Skokov, Prithwish Tribedy, and Raju Venugopalan Erratum: Phys.Rev.Lett.121,052301(2018) received 13 June 2019

CGC+Hydro+UrQMD

B. Schenke, C. Shen, P. Tribedy, nucl-th1908.06212

Pythia8 and collectivity

 $au \approx 0 \sim 0.6 ~{
m fm/c}$ Multi parton interaction (MPI)

 $\tau \approx 1 \sim 2 \text{ fm/c}$

 $au pprox 0.6 \sim 1 ~{
m fm/c}$ String shoving, transverse push, recombination

Hadronize. Color rope

<u>Enhancement of multi-strange</u> <u>hadrons in high-multiplicity pp</u>

ロープからのハドロン生成でストレンジネスが増大する。

ALICE Nature Phys. 13 (2017)535

String shoving in pythia8

ストリングの斥力反発の効果

Jet-quenching and v2 at high pt

Nagle, Ann.Rev.Nucl.Part.Sci68 (2018)211

pAではジェットクエンチングがないのに、高横運動量のv2があるのはなぜか?

<u>Summary 2019年10月現在</u>

- 流体模型でpp, pA, AAの集団効果は説明できる。
- Parton cascade model (AMPT)で集団効果はptの大きい領域は 説明できない。
- カラーグラス凝縮モデル(MSTV)でcorrelationは説明できない。
- String recombination, shaving and fusion to rope in Pythia8
 でも集団効果はでてくるが、p/piを過大に評価するなど、解決
 すべき点もいろいろある。
- HERWIG event generator: cluster hadronization → new model: p/pi ratio があうようになったが、ストレンジ粒子が多すぎ。

- 流体模型 vs パートンカスケード(anisotropic parton escape mechanism)
 両方の描像で実験値が説明できるのは不思議である。
- ジェットクエンチングなしで、high-ptのv2をどう説明する? Parton escape mechanism をサポートしているのか? あるいは、initial dynamicsだけで 説明するCGCをサポートしているのか? Pythia8?
- カラーグラス凝縮モデルにもとづく計算の拡張 i.e. CYM + jet ハドロン化
- e+e-, e-p, and e-A ?