Results on Soft Physics from Quark Matter 2012 HIP/HIC @ Nagoya University Sep. 6th 2012

Takahito Todoroki University of Tsukuba RIKEN Nishina Center

Post QM12 HIC-HIP

Contents

Event plane correlations & Event-by-Event v_n

 \diamond High p_{T} hadron and jet v_{2}

 \diamond Direct photon v₂

 \diamond PIDed v_n and scaling property

 \diamond BW fit to PIDed v_n, HBT w.r.t. Φ_3

♦ Beam Energy Scan

d correlator

1105.3928 IIX but no correlations for reso.

 $\Phi - \Phi$

Desired correlator

$$\bigvee \left< \cos k \right(\Phi$$

Resolution for individual p

Can generalize into multi-plane correlations

 $\text{Res}\{(c_1\Psi_1 + ... + lc_l\Psi_l)\} = \text{Res}\{c_1\Psi_1\}...\text{Res}\{c_ll\Psi_l\}$

d correlator

1105.3928IIX but no $\Phi - \Phi$ correlations tions for reso.

Resolution for individual p

Can generalize into multi-plane correlations

Variable: $c_1\Phi_1 + 2c_2\Phi_2... + lc_l\Phi_l$ satisfying: $c_1 + 2c_2... + lc_l = 0$ arXiv:1104.4740, Bhalerao, Luzum,

$$2\Phi_2 + 3\Phi_3 - 5\Phi_5 = 3(\Phi_3 - \Phi_2) - 5(\Phi_5 - \Phi_2)$$
$$-8\Phi_2 + 3\Phi_3 + 5\Phi_5 = 3(\Phi_3 - \Phi_2) + 5(\Phi_5 - \Phi_2)$$

 $\operatorname{Res}\{(c_1\Psi_1 + ... + lc_l\Psi_l)\} = \operatorname{Res}\{c_1\Psi_1\}...\operatorname{Res}\{c_ll\Psi_l\}$

ATLAS Conference Note

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2012-049/

Can generalize into multi-plane correlations

Variable: $c_1\Phi_1 + 2c_2\Phi_2... + lc_l\Phi_l$ satisfying: $c_1 + 2c_2... + lc_l = 0$ arXiv:1104.4740, Bhalerao, Luzum,

IIV but no

$$2\Phi_2 + 3\Phi_3 - 5\Phi_5 = 3(\Phi_3 - \Phi_2) - 5(\Phi_5 - \Phi_2)$$
$$-8\Phi_2 + 3\Phi_3 + 5\Phi_5 = 3(\Phi_3 - \Phi_2) + 5(\Phi_5 - \Phi_2)$$

 $\operatorname{Res}\{(c_1\Psi_1 + ... + lc_l\Psi_l)\} = \operatorname{Res}\{c_1\Psi_1\}...\operatorname{Res}\{c_ll\Psi_l\}$

Event averaged v_n (n=2-6) in broad p_T range

Series ATLAS, Phys. Rev. C 86, 014907 (2012) 0-5% ATLAS 5-10% 10-20% 20-30% -**-**n=2 ← n=3 Pb-Pb $\sqrt{s_{NN}}$ =2.76 TeV 0.2 $L_{int} = 8 \,\mu b^{-1} |\eta| < 2.5$ → n=5 -**⊕** n=6 full FCal EP 0.1 Central **^** 30-40% 40-50% 50-60% 60-70% Peripheral 0.2 0.1 10 10 10 8 10 8 6 2 6 8 2 p_{_} [GeV] p_{_} [GeV]

- \diamond Significant v₂ v₆ in broad p_T and centrality
- \diamond Similar p_T dependence
- \diamond In most central collisions(0-5%): v₃ & v₄ > v₂

Event-by-Event v_n

$$\frac{dN}{d\phi} \propto 1 + 2\sum_{n=1}^{\infty} v_n^{\text{obs}} \cos n(\phi - \Psi_n^{\text{obs}}) = 1 + 2\sum_{n=1}^{\infty} \left(v_{n,x}^{\text{obs}} \cos n\phi + v_{n,y}^{\text{obs}} \sin n\phi \right)$$

♦ Obtaining amplitude and correction & unfolding $\vec{v}_n^{\text{obs}} = (v_{n,x}^{\text{obs}}, v_{n,y}^{\text{obs}})$

Event-by-Event v_n

4A, Jia

♦ Event by Event single particle distributions

$$\frac{dN}{d\phi} \propto 1 + 2\sum_{n=1}^{\infty} v_n^{\text{obs}} \cos n(\phi - \Psi_n^{\text{obs}}) = 1 + 2\sum_{n=1}^{\infty} \left(v_{n,x}^{\text{obs}} \cos n\phi + v_{n,y}^{\text{obs}} \sin n\phi \right)$$

♦ Obtaining amplitude and correction & unfolding $\vec{v}_n^{\text{obs}} = (v_{n,x}^{\text{obs}}, v_{n,y}^{\text{obs}})$

Event-by-Event v_n

4A, Jia

ATLAS Conference Note

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2012-114/

 $\overset{0}{\Rightarrow} \overset{0}{=} \underbrace{v_2}_{v_2} \overset{0}{=} \underbrace{v_2}_{v_3} \overset{0}{=} \underbrace{v_1}_{v_3} \overset{0}{=} \underbrace{v_2}_{v_4} \overset{0}{=} \underbrace{v_2}_{v_4$

High p_T single hadron and jet v_2

 \diamond None-zero v2 of single hadrons at high p_T

- \diamond Jet v2 is qualitatively consistent with high p_{T} single hadron v2
 - Path length dependence of parton energy loss

Very high $p_T v_2$ via 2PC

1C, Zhukova

 \diamond None zero v₂ up to p_T 40 GeV/c \diamond Comparable to jet v₂ above 20 GeV/c

17 Aug 2012

Theory Comparison

1C, Zhukova

Data: PRL 109.022301(2012)

Theory: B.Betz, M.Gyulassy; arXiv:1201.0281

-Data can constrain different theoretical scenarios

Direct Photon v₂

 \diamond v₂ down to 0.5 GeV via external conversion di-electron pairs

- ♦ Consistency check with previous measurements via photon
- \diamond Agreement up to 2 GeV, None-zero v₂ is conclusive

Direct Photon v₂

 \diamond v₂ down to 0.5 GeV via external conversion di-electron pairs

- \diamond Consistency check with previous measurements via photon
- \diamond Agreement up to 2 GeV, None-zero v₂ is conclusive

ALICE compila

Identified particle v_n

17 Aug 2012

Number of constituent quark : N_a scaling of vn

- \Rightarrow N_q scaling up to KE_T/n_q = 0.7 GeV for v₂, v₃, and v₄
 - Down to 39 GeV for v₂ and v₃
- ♦ Scaling of higher harmonics originating from $v_n^{1/n} \propto v_2^{1/2}$

Number of constituent quark : N_a scaling of vn

- \Rightarrow N_q scaling up to KE_T/n_q = 0.7 GeV for v₂, v₃, and v₄
 - Down to 39 GeV for v₂ and v₃
- \diamond Scaling of higher harmonics originating from $v_n^{1/n} \propto v_2^{1/2}$

N_a scaling of strange hadron v₂

3A, Nasim

\diamond Multi-strangeness hadrons deviate from $K^0{}_{\rm S}$

17 Aug 2012

Post QM12 HIC-HIP

6D, Noferini

N_q scaling of v_2 at LHC

- \diamond Deviation from pi, K for P, Λ , ϕ at low p_T
 - Due to stronger radial flow at LHC than RHIC?

$\diamond N_q$ scaling survives at intermediate p_T

17 Aug 2012

Post QM12 HIC-HIP

Geometry controlled collision systems

4A, Huang

Tip-tip

♦ Various collision geometry ♦ This time only centrality selected ♦ Rich constraints to models in future

v₂ in geometry controlled collision systems

collisions

17 Aug 2012

Post QM12 HIC-HIP

Triangularity washed out?

Beam Energy Scan – N_q scaling

6B, Shi

• Significant difference between baryon-antibaryon v_2 at lower energies.

• No clear baryon/meson grouping for anti-particles at <=11.5 GeV.

NCQ scaling is broken!

BES-Modifications of R_{CP}

BES-Disappearance of Charge Separation w.r.t. EP

- Motivated by search for local parity violation. Require sQGP formation.
- The splitting between OS and LS correlations (charge separation) seen in top RHIC energy Au+Au collisions.

This charge separation signal disappears at lower energies (<= 11.5 GeV)!

Summary-1

- \diamond EP correlations and Event-by-Event v_n
 - More constraints to Hydro. Calculations
- \diamond None-zero high p_T hadron & jet v_2
 - Qualitatively consistent behavior with each other
 - Path length dependence of parton energy loss
- Oirect photon v₂ down to 0.5 GeV/c via conversion di-electrons
 - Conclusive none-zero v_2 at low p_T

Summary-2

- \diamond N_q scaling for v₂, v₃ & v₄
 - Deviation from scaling curve of v₂ as strangeness increase at RHIC
 - P, Λ , ϕ v₂ don't follow scaling curve of v₂ at LHC
- \diamond BW fit to PID v_n & HBT w.r.t. Φ_3
 - Triangularity may be washed out by space time evolution
- ♦ Beam Energy Scan
 - Trends of observables change around 11 GeV

Back Up Slides

Elliptic Flow (n=2)

Event Plane

Correlate particles in tracker with those in HF.

(Δη>3)

Two-particle Cumulant

Consider all two-particle correlations.

Methods have different sensitivity to event-by-event fluctuations and non-flow effects.

Four-particle Cumulant

Lee-Yang Zeros

Consider all particle correlations -(Not all shown!).

Identified particle v_n

Break of N_q scaling of v_2 at high p_T

4A, Huang

- > A break of n_{q} scaling in 20-60% centrality at KE_T > 0.7 GeV.
- > In the 0-20% centrality, scaling is still roughly kept.
- Different mechanisms for pion and proton production at intermediate p_T for different centralities

π & p v₂ in 0-2% central U + U collision

4A, Huang

- ετ increase about 20% from 0-10% Au+Au to 0-1% U+U collisions
- Strong mass ordering for v_2 in 0-2% central U+U collision at 193 GeV despite of relatively small increase of $\varepsilon\tau$.
- Radial flow or geometry?
- The geometry separation will be done in near future

N_q scaling in U+U and Cu+Au collisions U+U Cu+Au

 $\diamond~\text{N}_{\text{q}}$ scaling works for U+U and Cu+Au for π , P

3D HBT radii

- ♦ "Out-Side-Long" system
 - Bertsch-Pratt parameterization
- Core-halo model
 - Particles in core are affected by coulomb interaction

 $C_2 = C_2^{core} + C_2^{halo}$

=
$$N[\lambda(1+G)F] + [1-\lambda]$$

 $G = \exp(-R_{inv}^2 q_{inv}^2)$

$$= \exp(-R_{side}^{2}q_{side}^{2} - R_{out}^{2}q_{out}^{2} - R_{long}^{2}q_{long}^{2} - 2R_{os}^{2}q_{side}q_{out})$$

R_{long}: Longtudinal size R_{side}: Transverse size R_{out}: Transverse size + emission duration R_{os}: Cross term between Out and Side

Correlations relative to $\Psi_{2,3}$ 0-10% 6D, Todoroki

17 Aug 2012

Post QM12 HIC-HIP

BES-Higher Moments of Net-protons

$$\sigma^{2} = \langle (N - \langle N \rangle)^{2} \rangle$$

$$S = \langle (N - \langle N \rangle)^{3} \rangle / \sigma^{3}$$

$$\kappa = \langle (N - \langle N \rangle)^{4} \rangle / \sigma^{4} - 3$$

- Higher moments more sensitive to Critical Point induced fluctuations.
- Deviation from Poisson baseline in 0-5% collisions at >7.7 GeV.
- Above Poisson baseline in peripheral collisions below 19.6 GeV.
- UrQMD shows monotonic behavior.
- Need precision measurements at low energies.

Net-proton/Net-charge/Net-kaon

Luo, 7B, Fri,; McDonald, 7B, Fri.

Li/Sahoo/Sarkar, poster #215/557/394

BES-Directed Flow of Protons

- Directed flow (v₁) slope: sensitive to 1st order phase transition.
- Proton v_1 slope changes sign from + to between 7.7 and 11.5 GeV and remains small but negative up to 200 GeV.
- v₁ slopes for other particles are all negative.
- "net-proton" v_1 slope shows a minimum around 11.5-19.6 GeV.
- AMPT/UrQMD models cannot explain data.

17 A<mark>ug 2012</mark>