流体、バルク、フロー

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe Department of Physics, Nagoya University Duke University

Chiho NONAKA

April 8, 2017@Nagoya

QM2017@Chicago

- From February 5 to February 11
- More than 700 participants!
- 37 plenary talks and 176 parallel talks + ~300 posters

Heavy Ion Collisions

Tools	s & Phys	sical Ob	servab	les
collisions	thermalization	hydro	hadronization	freezeout
		NNK MM		
Tools		hydrodynamics	5	
part	tons	event gene	rator	hadrons
Color Glass Condens	ate		recombination	
4 田屋:初期過程			fragmentation	
Physical observables	3 本郷:カイ	イラル磁気・渦効	果、理論の発展	statistical model
		6 山口		photons/leptons
		1 野中	2 中込	bulk property
		5 坂井		Jets
		7 渡辺		heavy quarkonią

Heavy Ion Coll STAR@RHIC	isions@C	XM2017	ALICE@LHC 2017
	p+p,		PEPE @ surts) PEPE @ surts) DE 100 11302 PEPE @ surts) PEPE @ surts)
Au+Au(Beam Energy Scan) 7.7, 11.5, 19.8, 27, 39	u+Au, He+Au U+U, Au+Au, 200	Pb+Pb 2760	Pb+Pb 5020 GeV
	RHIC	LHC	$\sqrt{s_{NN}}$

Heavy lo	n Collisio p+p, d+A	ons@(? u,He+Au)M2	017	p+p p+Pb [?]
Au+Au(Beam En 7.7, 11.5, 19.8, 2	ergy Scan) U+U 7, 39 ? 200	, Au+Au,	27	760	5020 GeV
流体模型	R	HIC	Lł	ΗC	$\sqrt{s_{NN}}$
collisions	thermalization	hydro	hadron	ization	freezeout
		when he have			
	Initial conditions	Hydrodyna	imics	Final st	ate interactions
K M Z I M Z K M I C. NONAKA	Fluctuations: Glauber, KLN, IP-Glasma	QGP bulk pro EoS: lattice C Shear and bu viscosities	operty CD Ilk	Cooper- MC sam Hadron generat	-frye+decay pling based event or

Speaker	IC	Hydro	Particlization	observables	system
Eskola	NLO pQCD + saturation	(2+1)-d,η	CF, decay, vis	v _n , correlation	Au+Au, Pb+Pb
Denicol	IP-Glasma	MUSIC,η,ζ	UrQMD	v ₂ ,v ₃	RHIC/LHC
Bernhard	TRENTO	(2+1)-d, η,ζ	UrQMD	Yield, <p<sub>T>,v_n</p<sub>	Pb+Pb
McDonald	IP-Glasma	MUSIC, η,ζ	UrQMD	Flow 全般	Pb+Pb
Gardim	NEXUS	SPHERIO	MC sampling	correlation	Au+Au
Luzum	NEXUS	SPHERIO	MC sampling	fluctuations	Au+Au
Sakai	MC-Glauber	Thermal fluc,η	JAM	factorization	Pb+Pb
Wang	AMPT	(3+1)-d <i>,</i> η	CF,decay	Λ , vorticity	Au+Au
Karpenko	UrQMD	(3+1)-d <i>,</i> η	UrQMD	Λ , vorticity	Au+Au(BES)
Auvinen	UrQMD	(3+1)-d <i>,</i> η	UrQMD	Yield, HBT,v ₂	Au+Au(BES)
Shen	MC- Glauber+Lexus	MUSIC,η,κ	Hadron cascade	Yield	Au+Au(BES)
Moreland	TRENTO	(2+1)-d, η,ζ	UrQMD	Yield, v _n	P+Pb
Kawaguchi	MC-Glauber PYTHIA	(3+1)-d, η	JAM	Yield, v _n	P+Pb, p/d/He+Au

Speaker	IC	Hydro	Particlization	observables	system
Eskola	NLO pQCD + saturation	(2+1)-d,η	CF, decay, vis	v _n , correlation	Au+Au, Pb+Pb
Denicol	IP-Glasma	MUSIC,η,ζ	UrQMD	v ₂ ,v ₃	RHIC/LHC
Bernhard	TRENTO	(2+1)-d, η,ζ	UrQMD	Yield, <p<sub>T>,v_n</p<sub>	Pb+Pb
McDonald	IP-Glasma	MUSIC, η,ζ	UrQMD	Flow 全般	Pb+Pb
Gardim	NEXUS	SPHERIO	MC sampling	correlation	Au+Au
Luzum	NEXUS	SPHERIO	MC sampling	fluctuations	Au+Au
Sakai	MC-Glauber	Thermal fluc,η	JAM	factorization	Pb+Pb
Wang	AMPT	(3+1)-d <i>,</i> η	CF,decay	Λ , vorticity	Au+Au
Karpenko	UrQMD	(3+1)-d <i>,</i> η	UrQMD	Λ , vorticity	Au+Au(BES)
Auvinen	UrQMD	(3+1)-d <i>,</i> η	UrQMD	Yield, HBT,v ₂	Au+Au(BES)
Shen	MC- Glauber+Lexus	MUSIC,η,κ	Hadron cascade	Yield	Au+Au(BES)
Moreland	TRENTO	(2+1)-d, η,ζ	UrQMD	Yield,v _n	P+Pb
Kawaguchi	MC-Glauber PYTHIA	(3+1)-d, η	JAM	Yield, v _n	P+Pb, p/d/He+Au

	Speaker	IC	Hydro	Particlization	observables	system
	Eskola	NLO pQCD + saturation	(2+1)-d,η	CF, decay, vis	v _n , correlation	Au+Au, Pb+Pb
	Denicol	IP-Glasma	MUSIC,h,z	UrQMD	v ₂ ,v ₃	RHIC/LHC
	McDonald	IP-Glasma	MUSIC, η,ζ	UrQMD	Flow 全般	Pb+Pb
	Shen	MC- Glauber+Lexus	MUSIC,η,κ	Hadron cascade	Yield	Au+Au(BES)
	Gardim	NEXUS	SPHERIO	MC sampling	correlation	Au+Au
	Luzum	NEXUS	SPHERIO	MC sampling	fluctuations	Au+Au
	Sakai	MC-Glauber	Thermal fluc,η	JAM	factorization	Pb+Pb
	Kawaguchi	MC-Glauber PYTHIA	(3+1)-d, η	JAM	Yield, v _n	P+Pb, p/d/He+Au
	Karpenko	UrQMD	(3+1)-d, η	UrQMD	Λ , vorticity	Au+Au(BES)
	Auvinen	UrQMD	(3+1)-d, η	UrQMD	Yield, HBT,v ₂	Au+Au(BES)
	Bernhard	TRENTO	(2+1)-d, η,ζ	UrQMD	Yield, <p<sub>T>,v_n</p<sub>	Pb+Pb
14	Moreland	TRENTO	(2+1)-d, η,ζ	UrQMD	Yield, v _n	P+Pb
K I K	Wang	AMPT	(3+1)-d, η	CF,decay	Λ , vorticity	Au+Au

Speaker	IC
Eskola	NLO pQCD + saturation
Denicol	IP-Glasma
McDonald	IP-Glasma
Shen	MC- Glauber+Lexus
Gardim	NEXUS
Luzum	NEXUS
Sakai	MC-Glauber
Kawaguchi	MC-Glauber PYTHIA
Karpenko	UrQMD
Auvinen	UrQMD
Bernhard	TRENTO
Moreland	TRENTO
Wang	ΔΜΡΤ

Ι

Fluctuating initial conditions

- Model
 - NLO pQCD + saturation
 - IP-Glasma: gluon, glasma
 - MC-Glauber: nucleon

- ・ TRENTO:Bayesian 解析に便利。IP-Glasma、KLN、 Glauber風の初期条件。Normalization は決まら ない。
- MC-Glauber+PYTHIA for small systems
- Event generator
 - AMPT:HIJING(jet interaction)-ZPC(parton cascade)-ART(hadronic scattering)
 - NEXUS: Regge-Gribov theory
 - ・ UrQMD: ハドロンベース 低い衝突エネルギー
- New
 - MC-Glauber+Lexus for BES experiment 低エネルギー衝突、流体は少しずつ作られる

TRENTO

T_RENTo: parametric initial condition model

Ansatz: entropy density proportional to **generalized mean** of local nuclear density

$$\mathsf{s} \propto \Big(rac{T^p_A+T^p_B}{2}\Big)^{1/p} \ T_{A,B}(x,y) = \int dz \,
ho_{A,B}^{\mathrm{part}}(x,y,z).$$

 $p \in (-\infty, \infty)$ = tunable parameter; varying p mimics other models:

- $p = 1 \implies s \propto T_A + T_B$ wounded nucleon model
- $p = 0 \implies s \propto \sqrt{T_A T_B}$ similar to IP-Glasma, EKRT
- Previous work: p = 0.0 ± 0.2
 PRC 92 011901 [1412.4708] PRC 94 024907 [1605.03954]

See talk by S. Moreland, Wed. 10:40

by Bernhard

MC-Glauber+Lexus

The 3D MCGlauber-LEXUS model

Chun Shen

. NONAKA

- Collision time and 3D spatial position are determined for every binary collision
- The rapidity loss is 後?
 determined by the LEXUS
 model

$$P(y_p, y_T, y) = \lambda \frac{\cosh(y - y_T)}{\sinh(y_P - y_T)} + (1 - \lambda)\delta(y - y_P)$$

• QCD strings are freestreaming by $\tau_{\rm th} = 0.5 fm$ before thermalized to medium

Quark Matter 2017

by Shen

10/17

低エネルギー衝

扱い

突での流体の取り

流体:2つの原子

核が通りに抜けた

MC-Glauber+Lexus

The 3D MCGlauber-LEXUS model

- Collision time and 3D spatial position are determined for every binary collision
- The rapidity loss is determined by the LEXUS model

$$P(y_p, y_T, y) = \lambda rac{\cosh(y - y_T)}{\sinh(y_P - y_T)} + (1 - \lambda)\delta(y - y_P)$$

• QCD strings are free-streaming by $\tau_{\rm th} = 0.5 fm$ before thermalized to medium

10/17

MC-Glauber+Lexus

Hydrodynamics with sources

Energy-momentum current and net baryon density are feed into hydrodynamic simulation as source terms

$$\partial_{\mu}T^{\mu\nu} = J_{\text{source}}^{\nu}$$
流体がsource term を通
 $\partial_{\mu}J^{\mu} = \rho_{\text{source}}$ にて徐々に作られる。
where
 $J_{\text{source}}^{\nu} = \delta e u^{\nu} + (e+P)\delta u^{\nu}$
 $\delta u^{\nu} = \frac{\Delta_{\mu}^{\nu}J_{\text{source}}^{\mu}}{e+P}$
heats up the system accelerates the flow velocity
 ρ_{source} dopes baryon charges into the system

 Source terms are smeared with Gaussians in space and time

Chun Shen	Quark Matter 2017	12/17
		by Shen

Speaker	Hydro
Eskola	(2+1)-d,η
Denicol	MUSIC,h,z
McDonald	MUSIC, η,ζ
Shen	MUSIC,η,κ
Gardim	SPHERIO
Luzum	SPHERIO
Sakai	Thermal fluc,η
Kawaguchi	(3+1)-d, η
Karpenko	(3+1)-d, η
Auvinen	(3+1)-d, η
Bernhard	(2+1)-d, η,ζ
Moreland	(2+1)-d, η,ζ
Wang	(3+1)-d, η

EoS from lattice QCD、viscous hydrodynamics

- + transient fluid-dynamics EoM $\pi^{\mu\nu}$, SHASTA
- + transient fluid-dynamics EoM $\pi^{\mu\nu}$, KT scheme

Ideal, Smoothed particle hydrodynamics, 有限個の粒子に よって表現

+ thermal fluctuations,

vHLLE, EoS は密度も入っているはず。

VISHNU(Ohio group), SHASTA

KT scheme

C. NONAKA

by Sakai

Hydrodynamic Fluctuations

Parameters in initial conditions <- Centrality dependence of multiplicity p_T -differential v_2

ALICE Collaboration, Phys. Rev. Lett. 116 (2016) 132302 <u>Ideal hydro</u> → Larger than ALICE data <u>Viscous & Fluctuating</u> <u>hydro ($\eta/s = 1/4\pi$)</u> → Good agreement with ALICE data below $p_T \sim 1.5$ GeV

by Sakai

流体ゆらぎを取り入れた現実的なモデルの発展

流体から粒子へ

•

Speaker	Particlization
Eskola	CF, decay, vis
Denicol	UrQMD
McDonald	UrQMD
Shen	Hadron cascade
Gardim	MC sampling
Luzum	MC sampling
Sakai	JAM
Kawaguchi	JAM
Karpenko	UrQMD
Auvinen	UrQMD
Bernhard	UrQMD
Moreland	UrQMD
Wang	CE decay

・ Cooper-Frye で粒子分布を計算
・ Freezeout hypersurface の書き出し
・ 共鳴粒子
・ 粘性効果

$$E\frac{d^3N}{dp^3} = \int_{\sigma} d\sigma_{\mu} p^{\mu} f(x,p)$$

$$f_i(x,p) = f_{0i}(x,p) + \delta f_i$$

$$f_{0i}(x,p) = \frac{g_i}{(2\pi)^3} \left[\exp\left(\frac{p_i^{\mu}u_{\mu} - \mu_i}{T}\right) \pm 1 \right]^{-1}$$
崩壊
MC sampling
Event generatorへ
・ JAM
・ UrQMD

Final state interactions

	Speaker	observables	system	
	Eskola	v _n , correlation	Au+Au, Pb+Pb	Jets
	Denicol	V ₂ ,V ₃	RHIC/LHC	Heavy quarks c, b
	McDonald	Flow 全般	Pb+Pb	
	Shen	Yield	Au+Au(BES)	Thermalization.
	Gardim	correlation	Au+Au	sQGP, recombination
	Luzum	fluctuations	Au+Au	Collectivity
	Sakai	factorization	Pb+Pb	leptons occ phase structure
	Kawaguchi	Yield, v _n	P+Pb, p/d/He+Au √	medium (light quarks u,d,s)
	Karpenko	Λ , vorticity	Au+Au(BES)	photon
	Auvinen	Yield, HBT,v ₂	Au+Au(BES)	流体モデルは様々な物理量と密接
	Bernhard	Yield, <p<sub>T>,v_n</p<sub>	Pb+Pb	な関係がある。
	Moreland	Yield, v _n	P+Pb	
K	Wang	Λ , vorticity	Au+Au	
I K	M C. NONA	KA		

	Speaker	observables	system
	Eskola	v _n , correlation	Au+Au, Pb+Pb
	Denicol	V ₂ ,V ₃	RHIC/LHC
	McDonald	Flow 全般	Pb+Pb
	Shen	Yield	Au+Au(BES)
	Gardim	correlation	Au+Au
	Luzum	fluctuations	Au+Au
	Sakai	factorization	Pb+Pb
	Kawaguchi	Yield, v _n	P+Pb, p/d/He+Au
	Karpenko	Λ , vorticity	Au+Au(BES)
	Auvinen	Yield, HBT,v ₂	Au+Au(BES)
	Bernhard	Yield, <p<sub>T>,v_n</p<sub>	Pb+Pb
	Moreland	Yield, v _n	P+Pb
K	Wang	Λ , vorticity	Au+Au
I K	MZ C. NONA	KA	

流体にとって基本的 (当たり前感)

• One-particle distributions π , K, p, strangeness particles... Flow, v_2 , v_3

[Niemi, KJE, Paatelainen, Phys.Rev. C93 (2016) 024907]

Centrality dependence of charged-hadron pT spectra ~OK

LHC

Flow からn/s の情報

Centrality dependence of 2,3-particle cumulant flow coefficients v_n

Speaker	observables	system				
Eskola	v _n , correlation	Au+Au, Pb+Pb				
Denicol	V ₂ ,V ₃	RHIC/LHC				
McDonald	Flow 全般	Pb+Pb				
Shen	Yield	Au+Au(BES)				
Gardim	correlation	Au+Au				
Luzum	fluctuations	Au+Au				
Sakai	factorization	Pb+Pb				
Kawaguchi	Yield, v _n	P+Pb, p/d/He+Au				
Karpenko	Λ , vorticity	Au+Au(BES)				
Auvinen	Yield, HBT,v ₂	Au+Au(BES)				
Bernhard	Yield, <p<sub>T>,v_n</p<sub>	Pb+Pb				
Moreland	Yield, v _n	P+Pb				
Wang	Λ , vorticity	Au+Au				

流体にとって基本的 (当たり前感)

- One-particle distributions
 π, K, p, strangeness particles...
- Flow, v₂, v₃

実験を説明するのは少し困難かも?

- Correlations, HBT
- fluctuations

```
中込さん
```

Λ , vorticity

- 良い流体アルゴリズムの必要あり
- 衝撃波、小さな人工粘性

Cf. ジェットエネルギー損失

by Tachibana

Global Lambda Polarization

STAR, arXiv:1701.06657

Vorticity Structure in QGP

• Ridge-like vortex pairs in the transverse plane.

by Lucas V. Barbosa from WiKi Pedia

6

Shear Flow to Vorticity

Fluid shear and forward-backward asymmetry

- AMPT initial condition + hydrodynamics
- Start with: $v_x = v_y = v_\eta = 0$ at $\tau = 0.4 \,\mathrm{fm}$

Vorticity Structure in QGP

• Ridge-like vortex pairs in the transverse plane.

by Lucas V. Barbosa from WiKi Pedia

6

Λ and $\bar{\Lambda}$: UrQMD+vHLLE vs experiment

NEW

- Λ within experimentan error bars.
- Much smaller and opposite sign Λ
 -Λ splitting. Only μ_B effect in the model, and it is small.
- MHD interpretation: vorticity creates the average Λ+Λ̄, magnetic field makes the splitting.
- Magnetic field at particlization?

Iurii Karpenko, Vorticity in the QGP liquid and Lambda polarization at the RHIC BES 17/18

by Karpenko

Speaker	IC	Hydro	Particlization	observables	system
Eskola	NLO pQCD + saturation	(2+1)-d,η	CF, decay, vis	v _n , correlation	Au+Au, Pb+Pb
Denicol	IP-Glasma	MUSIC,η,ζ	UrQMD	v ₂ ,v ₃	RHIC/LHC
Bernhard	TRENTO	(2+1)-d, η,ζ	UrQMD	Yield, <p<sub>T>,v_n</p<sub>	Pb+Pb
McDonald	IP-Glasma	MUSIC, η,ζ	UrQMD	Flow 全般	Pb+Pb
Gardim	NEXUS	SPHERIO	MC sampling	correlation	Au+Au
Luzum	NEXUS	SPHERIO	MC sampling	fluctuations	Au+Au
Sakai	MC-Glauber	Thermal fluc,η	JAM	factorization	Pb+Pb
Wang	AMPT	(3+1)-d <i>,</i> η	CF,decay	Λ , vorticity	Au+Au
Karpenko	UrQMD	(3+1)-d <i>,</i> η	UrQMD	Λ , vorticity	Au+Au(BES)
Auvinen	UrQMD	(3+1)-d <i>,</i> η	UrQMD	Yield, HBT,v ₂	Au+Au(BES)
Shen	MC- Glauber+Lexus	MUSIC,η,κ	Hadron cascade	Yield	Au+Au(BES)
Moreland	TRENTO	(2+1)-d, η,ζ	UrQMD	Yield, v _n	P+Pb
Kawaguchi	MC-Glauber PYTHIA	(3+1)-d, η	JAM	Yield, v _n	P+Pb, p/d/He+Au

Bayesian Analysis

Speaker	IC	Hydro	Particlization	observables	system
Denicol	IP-Glasma	MUSIC,η,ζ	UrQMD	V ₂ ,V ₃	RHIC/LHC
Bernhard	TRENTO	(2+1)-d, η,ζ	UrQMD	Yield, <p<sub>T>,v_n</p<sub>	Pb+Pb
Auvinen	UrQMD	(3+1)-d <i>,</i> η	UrQMD	Yield, HBT,v ₂	Au+Au(BES)
Moreland	TRENTO	(2+1)-d, η,ζ	UrQMD	Yield, v _n	P+Pb

Shear viscosity

LHC Pb+Pb 2.76 and 5.02 GeV

 $(\eta/s)(T) = (\eta/s)_{\min} + (\eta/s)_{slope}(T - T_c) \times \left(\frac{T}{T_c}\right)^{(\eta/s)_{crv}}$

- Zero η/s excluded; min consistent with AdS/CFT
- Constant η/s excluded

. NONAKA

- Best constrained T ≤ 0.23 GeV
- RHIC data could disambiguate slope and curvature

by Bernhard

LHC Pb+Pb 2.76 and 5.02 GeV

Bulk viscosity

- Can be "tall" or "wide", but not both
- Short and wide (green) slightly favored

See also talk by G. Denicol, Wed. 17:30

by Bernhard

18/2

Bayesian characterization of the initial state and QGP medium

Bayesian Analysis

Speaker	IC	Hydro	Particlization	observables	system
Denicol	IP-Glasma	MUSIC,η,ζ	UrQMD	V ₂ ,V ₃	RHIC/LHC
Bernhard	TRENTO	(2+1)-d, η,ζ	UrQMD	Yield, <p<sub>T>,v_n</p<sub>	Pb+Pb
Auvinen	UrQMD	(3+1)-d <i>,</i> η	UrQMD	Yield, HBT,v ₂	Au+Au(BES)
Moreland	TRENTO	(2+1)-d, η,ζ	UrQMD	Yield, v _n	P+Pb

 Bernhard:もっとも綺麗な結果を得るのに成功している。 η/s, ζ/s の温度依存性

RHIC				LHC					
Observable	N^{π^+}	$\langle p_T^{\pi^+} \rangle$	$v_2\{2\}$	$v_3\{2\}$		N^{π^+}	$\langle p_T^{\pi^+} angle$	$v_2\{2\}$	$v_3\{2\}$
p_T cut (GeV)	$p_T > 0$	$p_T > 0$	$p_T > 0.15$	$p_T > 0.15$		$p_T > 0$	$p_T > 0$	$p_T > 0.2$	$p_T > 0.2$
Value	135	$0.411~{\rm GeV}$	0.0642	0.0183		307	$0.512~{\rm GeV}$	0.0831	0.0293
Uncertainty	10	$0.021~{\rm GeV}$	0.000075	0.0001		20	$0.017~{ m GeV}$	0.0034	0.0015

by Denicol

Bulk Viscosity

Results – probability distributions

Bayesian Analysis

Speaker	IC	Hydro	Particlization	observables	system
Denicol	IP-Glasma	MUSIC,η,ζ	UrQMD	V ₂ ,V ₃	RHIC/LHC
Bernhard	TRENTO	(2+1)-d, η,ζ	UrQMD	Yield, <p<sub>T>,v_n</p<sub>	Pb+Pb
Auvinen	UrQMD	(3+1)-d <i>,</i> η	UrQMD	Yield, HBT,v ₂	Au+Au(BES)
Moreland	TRENTO	(2+1)-d, η,ζ	UrQMD	Yield, v _n	P+Pb

• Bernhard:もっとも綺麗な結果を得るのに成功している。

η/s*, ζ*/s の温度依存性

Denicol: ζ/sの振る舞いがRHICとLHCで異なる? Bayesian analyses の正しい評価?
 Bernhard との違い: Initial condition を固定している。

ーつのcentralityのみ

おそらくは(3+1)次元の流体計算が重いためでは?

Bayesian Analysis

Speaker	IC	Hydro	Particlization	observables	system
Denicol	IP-Glasma	MUSIC,η,ζ	UrQMD	V ₂ ,V ₃	RHIC/LHC
Bernhard	TRENTO	(2+1)-d, η,ζ	UrQMD	Yield, <p<sub>T>,v_n</p<sub>	Pb+Pb
Auvinen	UrQMD	(3+1)-d <i>,</i> η	UrQMD	Yield, HBT,v ₂	Au+Au(BES)
Moreland	TRENTO	(2+1)-d, η,ζ	UrQMD	Yield, v _n	P+Pb

- Bernhard:もっとも綺麗な結果を得るのに成功している。 η/s, ζ/s の温度依存性
- Denicol: ζ/sの振る舞いがRHICとLHCで異なる? Bayesian analyses の正しい評価?
 Bernhard との違い: Initial condition を固定している。

ーつのcentralityのみ

おそらくは(3+1)次元の流体計算が重いためでは?

• Auvinen: BES 実験に適用。

BES

Parameter dependence on collision energy

 η/s and τ_0 show clear increasing trend towards lower energies (however, minimum of τ_0 increases by construction)

by Auvinen

Bayesian Analysis

Speaker	IC	Hydro	Particlization	observables	system
Denicol	IP-Glasma	MUSIC,η,ζ	UrQMD	V ₂ ,V ₃	RHIC/LHC
Bernhard	TRENTO	(2+1)-d, η,ζ	UrQMD	Yield, <p<sub>T>,v_n</p<sub>	Pb+Pb
Auvinen	UrQMD	(3+1)-d <i>,</i> η	UrQMD	Yield, HBT,v ₂	Au+Au(BES)
Moreland	TRENTO	(2+1)-d, η,ζ	UrQMD	Yield, v _n	P+Pb

- Bernhard:もっとも綺麗な結果を得るのに成功している。 η/s, ζ/s の温度依存性
- Denicol: ζ/sの振る舞いがRHICとLHCで異なる? Bayesian analyses の正しい評価?
 Bernhard との違い: Initial condition を固定している。

ーつのcentralityのみ

おそらくは(3+1)次元の流体計算が重いためでは?

• Auvinen: BES 実験に適用。

η/s~0 <- Bernhard とη/s の振る舞いが inconsistent

• Moreland: small system に適用。挑戦的な計算。まだ途中か

強力な解析手法だが、モデル、input が大事。信頼の置ける結果を得るには 多くの実験結果、膨大な計算量が必要。

- ・ 流体模型の発展は著しい
- 現実的な実験解析が可能に
 - Bayesian 解析:実験結果からモデルのパラメータ、QGPの物性を探る。
- ・ 流体模型の枠組みの発展
 - 流体ゆらぎ
 - Anisotropic hydrodynamics

