高エネルギー原子核偏芯衝突における 高強度磁場生成。直接探索

志垣 賢太 (後広島大学)

第 28 回 Heavy Ion Pub 研究会 2019年1月10日 奈良女子大学

Presentation Outline

- heavy ion collisions at LHC
- **n** physics under ultra-intense magnetic field
- field intensity and time structure
	- implication of long-lived source via vorticity
- experimental approaches
	- past attempts and key issues
- **near-future prospects**
	- electron and muon reunion at LHC
	- muon measurement at LHC/ALICE from 2021
- **E** summary and concluding remarks

Pb-Pb at Highest Ever Energy

$\sqrt{s_{NN}}$ = 5.02 TeV in 2015, 2018

- 25 times higher than at RHIC
- design energy at 5.5 TeV

2.76 TeV in 2010 and 2011

Hotter, Larger, Longer-Lived, and Purer

Example 1 fireball compared to that at RHIC

- energy density \times ~3, volume \times ~2, life \times 1.2-1.3
	- \blacksquare ~ 16 GeV/fm³ (thermalization time ~ 1 fm/c)

 \blacksquare ~ 300 fm³, ~ 10 fm/c

- net quark (baryon) density \sim 0
	- anti-proton/proton at mid-rapidity
		- $p+p$ 900 GeV: 0.957 ± 0.006 (stat) ± 0.014 (sys)
		- $p+p7$ TeV: 0.990 ± 0.006 (stat) ± 0.014 (sys)

Playground with Extreme Conditions

- deconfined quark/gluon phase now in hand
- quark behavior in strong QCD field
	- energy loss and redistribution
- quarks interaction in strong QCD field
	- color Debye screening to melt quarkonia
- **E** chiral symmetry restoration
	- hadron mass modification
- **n** more exotics

– …

– physics under ultra-intense magnetic field

Ultra-Intense Magnetic Field

\blacksquare U(1) magnetic field

- naturally expected with moving charged sources (nuclei)
- $-$ ~ 10¹⁵ T at LHC, ~ 10¹ T at RHIC
	- **Example 1 cf. magnetar surface ~ 1011 T**
- could be long-lived in Terrect fluid Magnetic Field
- **n** possible non-linear \mathbb{Q} D behaviors
	- above electron critic_{al magnetic} field $em_e^2 = 4 \times 10^9$ T
- **u** various interesting **EVAP** is under discussion
	- chiral magnetic effects
	- $-$ quark syn ϵ rotron radiation
	- $-$ lower QCL ritical temperature

Critical Magnetic Field

- critical electric/magnetic field of electron
	- energy within Compton radius \approx own rest mass
	- $-eE_{c}h/m_{e}c = m_{e}c^{2}$; $E_{c} = m_{e}^{2}c^{3}/eh \sim 10^{17}$ V/m
	- $eB_{c}h/m_{e}c = m_{e}c$; $B_{c} = m_{e}^{2}c^{2}/eh \sim 10^{9}$ T
- Schwinger mechanism in case of electric field
	- e^+e^- pair production
	- no sense to consider $E > E_c$
- non-linear QED effects in case of magnetic field
	- $-$ e.g. $\gamma \rightarrow \gamma \gamma$, $\gamma \rightarrow e^+e^-$, birefringence, ...

Chiral Magnetic Effects

if strong parity violation and magnetic field

! charge separation, observed at RHIC and LHC

correlation between particles with different charges

correlation between particles with same charges

10 January 2019 28th Heavy Ion Pub at Nara Women's Univ. / Intense Magnetic Field Search / K. Shigaki 7/30

LPV Domain Size and Observables

Example 2 assuming perfect alignment and distribution

- if 1 domain, $[(n_{_{+}}^{\uparrow} n_{_{+}}^{\downarrow})/(n_{_{+}}^{\uparrow} + n_{_{+}}^{\downarrow})]^2$ is <u>always</u> 1
- if 2, it is 1 (50%) or 0 (50%), *i.e.* average at 1/2
- if 3, it is 1 (25%) or 0.11 (75%), *i.e.* average at 1/3
- # domains \leftrightarrow width of $[(n_+^{\dagger} n_+^{\dagger})/n_+]^2$ distribution
- **large N limit ≈ independent N particle production**
- $[(n_{+}^{\uparrow} n_{-}^{\downarrow})/(n_{+}^{\uparrow} + n_{-}^{\downarrow})]^2$ is <u>always</u> 0
	- note this *does* mean correlation
- **large N limit** \neq **independent N particle production**

Field Intensity and Time Evolution

- ! cascade models: common approach
	- spectator contribution dominant but short lived
		- \blacksquare 10¹⁴ 10¹⁵ T at LHC
		- life time < 1 fm/c due to Lorentz contraction
		- \blacksquare though still above m \rm_e^2/e after several fm/c

Field Sustainability Unknown

! participant contribution in "perfect fluid"?

- "static field" approximation w/ Glauber model
	- **E** finite baryon stopping taken into account
	- \blacksquare 10¹³ 10¹⁴ T at LHC

! hydro model with local charge nearly available (!)

Vorticity (and/or Magnetic Field)

- ! angular momentum transfer to Λ polarization
	- spin orbit coupling
- magnetic field also possible Λ polarization source
	- opposite alignment of Λ and Λ

detectable via parity violating Λ decay

Λ Polarization Measurements

■ successful example of precision improvement

- zero consistent with upper limit at 0.2% in 2007 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

&-

2-

 $-\sqrt{s_{NN}}$ dependent polarization found by 2017

Non-Zero (and Large) Vorticity Found

- $\bullet \quad \omega = (9 \pm 1) \times 10^{21} \text{ s}^{-1}$
	- $\sqrt{s_{NN}}$ averaged
	- assuming T = 160 MeV
- magnetic field?
	- implied by Λ and $\overline{\Lambda}$ difference
	- though still zero consistent

Implications for Magnetic Field Search

- **nagnetic field not yet caught** in Sa
- long-lived medium rotation; very promising source

 $\overline{}$

n higher statistics required (and planned) at LHC

Direct Probes of Intense Field

- must originate from initial stages
	- field life time ~ 0.1 fm/*c*
- **n** must be electro-magnetic

- **Iomorphical probe: direct** γ/γ^* from pQCD processes
- **good reference:** γ/γ^* from later stages
	- e.g. π^0 decay γ/γ^* (Dalitz di-electron)

Proposal 1. Direct Photon Anisotropy

! polarization tensor in magnetic field

- modification factor to $\frac{E_1 E_2 dN_{l+l-}}{d^3 p_1 d^3 p_2 d^4 x} = \frac{\alpha^2}{2\pi^4 q^4} \frac{p_1^{\mu} p_2^{\nu} + p_2^{\mu} p_1^{\nu} \frac{q^2}{2} g^{\mu \nu}}{\exp(q^0/T) 1}$ Im $G^{\mu \nu}_R(q;T)$
- $-$ seemingly $v_2 \sim o(10^{-2})$

Y.Akamatsu, H.Hamagaki, T.Hatsuda, T.Hirano Phys. Rev. C 85, 054903 (2012)

obvious existence of other contributions to v_2

Proposal 2. Direct Photon Polarization

anisotropic decay w.r.t. magnetic field

! feasibility study based on QED calculations

– vacuum polarization tensors under magnetic field

- **E.** summation for infinite Landau levels
- \blacksquare photon momentum up to \sim GeV
- ! *ref.* K.-I. Ishikawa, K. Shigaki, *et al.*, Int. J. Mod. Phys. A28, 1350100 (2013)
- **anisotropy ~** $o(10^{-1})$

Preliminary Analysis in ALICE Run/1

I intermediate mass region containing direct y^*

- though combinatorial dominant
- **If low mass region as reference**
	- Dalitz decay dominant

広島大学

Preliminary Analysis in ALICE Run/1

I intermediate mass region containing direct y^*

- though combinatorial dominant
- **If low mass region as reference**
	- Dalitz decay dominant

広島大学

Proposal 3. Femto-Spectrometer

- **Dending power Bdl ~** 10^{14} **T×** 10^{-15} **m**
- $\blacksquare \rightarrow$ bending angle \sim 3×10⁻²/p [rad/(GeV/c)]
- detectable as opening angle offset
	- e⁺/e⁻ bent in opposite way around magnetic field axis
		- **Example 2** reaction axis from directional flow (v_1) in forward/backward
	- *o*(1) degree for *o*(1) GeV/*c* particles!

Not Even Preliminary

- **I** intermediate mass region containing direct y^*
	- though combinatorial dominant
- **If low mass region as reference**
	- Dalitz decay dominant

Not Even Preliminary

- **I** intermediate mass region containing direct y^*
	- though combinatorial dominant
- **Exercise is stronger deflection expected at low** p_T

R. Tanizaki, master's thesis, Hiroshima U., 2015

Key Issue: Significance, *i.e.* Statistics

- marginal at best, in $2012 2016$
	- 4 M.Sc. theses in 2013–2016
		- T.Hoshino, A.Tsuji, R.Tanizaki, Y.Ueda
	- 5 B.Sc. theses in 2012–2015
		- ! A.Tsuji, R.Tanizaki, Y.Ueda, A.Nobuhiro, K.Yamakawa
- higher statistics data available/coming in
	- 1 B.Sc. thesis in 2018
		- ! T.Osako; continuing, *e.g.* ATHIC 2018
- ALICE run 3 (2021-2023) even more promising
	- ×10 (di-)muons
	- ×100 minimum bias (di-)electrons

e and μ Reunion at LHC Energy

■ parallel approaches to same physics up to SPS

- muons at central (CMS) rapidity in fixed target exp.
	- ! *e.g.* NA38/50/51/60 dimuon spectrometer
- **n** physics emphasis (and people) separated at RHIC
	- broad QGP physics with electrons in central barrel
	- $-$ focused topics, e.g. high mass/ p_T and spin, with muons
		- ! *e.g.* PHENIX "forward" arms
		- \blacksquare low momentum \upmu ID technically challenging
- **E** reunion at LHC
	- $-$ low p_T muons within prolonged central Bjorken plateau
	- parallel and complementary approaches (again)

Muon Measurement at PHENIX

muon arms: 1.2 < |η| < 2.4 **n** minimum $p_T \sim 1.0 - 1.5$ GeV/*c*

Muon Measurement at ALICE

- \blacksquare muon arm: 2.5 < $\vert \eta \vert$ < 4.0
- \blacksquare MFT: 2.5 < $\vert \eta \vert$ < 3.6
- minimum $p_T \sim 0.5$ GeV/*c*

New Relation between e and µ at LHC

- two interesting regimes of quark-gluon phase
	- exploration on QCD phase diagram

- new opportunity only at LHC energy (and above)
	- *forward enough* for (low p_T) muon measurement
		- $=$ e.g. |y| above \sim 3.4 for p_{T} < 0.25 GeV/*c*, *p* > 4 GeV/*c*
	- *not too forward* for "central" physics
		- \blacksquare |y| up to \sim 4 at LHC (\sim 2 at RHIC)

Muon Forward Tracker (2021–)

Another Obvious Stage: RHIC BES-II

■ 2019-2021, STAR only $\sqrt{s_{NN}}$ = 7.7–19.6 GeV, 3.0–7.7 GeV (fixed target)

STAR starting to look into deflection

Summary, Conclusions, and Remarks

- wide range of interests; not only LPV/CME(/CVE)
- **Iffeld time structure: key for physical significance**
	- longer-lived participant component in "perfect fluid"?
- **n** proposals of experimental detection approaches
	- seemingly feasible, statistics permitting
	- simulations and real data analysis
		- **E** direct photon polarization
		- **E** femto-spectrometer
- high prospects in near-future high statistics data
	- both muons and electrons in ALICE run 3 (2021–2023)
	- RHIC BES-II (2019–2021) at STAR

