高工ネルギー原子核偏芯衝突 における 高強度磁場生成の直接探索

志垣賢太(●広島大学)

第 28 回 Heavy Ion Pub 研究会 2019 年 1 月 10 日 奈良女子大学

Presentation Outline

- heavy ion collisions at LHC
- physics under ultra-intense magnetic field
- field intensity and time structure
 - implication of long-lived source via vorticity
- experimental approaches
 - past attempts and key issues
- near-future prospects
 - electron and muon reunion at LHC
 - muon measurement at LHC/ALICE from 2021
- summary and concluding remarks

Pb-Pb at Highest Ever Energy

- $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ in 2015, 2018
 - 25 times higher than at RHIC
 - design energy at 5.5 TeV

2.76 TeV in 2010 and 2011

Hotter, Larger, Longer-Lived, and Purer

- fireball compared to that at RHIC
 - energy density × ~3, volume × ~2, life × 1.2–1.3
 - ~ 16 GeV/fm³ (thermalization time ~ 1 fm/c)

~ 300 fm³, ~ 10 fm/c

- net quark (baryon) density ~ 0
 - anti-proton/proton at mid-rapidity
 - *p*+*p* 900 GeV: 0.957 ± 0.006 (stat) ± 0.014 (sys)
 - *p*+*p* 7 TeV : 0.990 ± 0.006 (stat) ± 0.014 (sys)

Playground with Extreme Conditions

- deconfined quark/gluon phase now in hand
- quark behavior in strong QCD field
 - energy loss and redistribution
- quarks interaction in strong QCD field
 - color Debye screening to melt quarkonia
- chiral symmetry restoration
 - hadron mass modification
- more exotics
 - physics under ultra-intense magnetic field

Ultra-Intense Magnetic Field

U(1) magnetic field

- naturally expected with moving charged sources (nuclei)
- ~ 10¹⁵ T at LHC, ~ 10¹ T at RHIC
 - cf. magnetar surface ~ 0¹¹ T
- could be long-lived in erfect flui
- possible non-linear QLD behaviors
 - above electron critic gnetic field $em_e^2 = 4 \times 10^9 T$
- various interesting wisk under discussion
 - chiral magnetic effects
 - quark syn rotron radiation
 - lower QCL ritical temperature

Critical Magnetic Field

- critical electric/magnetic field of electron
 - energy within Compton radius \approx own rest mass
 - $eE_ch/m_ec = m_ec^2$; $E_c = m_e^2c^3/eh \sim 10^{17} \text{ V/m}$
 - $eB_{c}h/m_{e}c = m_{e}c; B_{c} = m_{e}^{2}c^{2}/eh \sim 10^{9} \text{ T}$
- Schwinger mechanism in case of electric field
 - e^+e^- pair production
 - no sense to consider $E > E_c$
- non-linear QED effects in case of magnetic field

- e.g.
$$\gamma \rightarrow \gamma \gamma, \gamma \rightarrow e^+e^-$$
, birefringence, ...

Chiral Magnetic Effects

if strong parity violation <u>and</u> magnetic field

charge separation, observed at RHIC and LHC

correlation between particles with different charges

correlation between particles with same charges

28th Heavy Ion Pub at Nara Women's Univ. / Intense Magnetic Field Search / K. Shigaki 7/30

LPV Domain Size and Observables/

assuming perfect alignment and distribution

- if 1 domain, $[(n_+^{\uparrow} n_+^{\downarrow})/(n_+^{\uparrow} + n_+^{\downarrow})]^2$ is <u>always</u> 1
- if 2, it is 1 (50%) or 0 (50%), *i.e.* average at 1/2
- if 3, it is 1 (25%) or 0.11 (75%), i.e. average at 1/3
- # domains \Leftrightarrow width of $[(n_+^{\uparrow} n_+^{\downarrow})/n_+^{\uparrow}]^2$ distribution
- large N limit ≈ independent N particle production
- $[(n_+^{\uparrow} n_-^{\downarrow})/(n_+^{\uparrow} + n_-^{\downarrow})]^2$ is <u>always</u> 0
 - note this <u>does</u> mean correlation
- large N limit ≠ independent N particle production

8/30

Field Intensity and Time Evolution

- cascade models: common approach
 - spectator contribution dominant but short lived
 - 10¹⁴ 10¹⁵ T at LHC
 - life time < 1 fm/c due to Lorentz contraction</p>
 - though still above m_e²/e after several fm/c

9/30

Field Sustainability Unknown

participant contribution in "perfect fluid"?

- "static field" approximation w/ Glauber model
 - finite baryon stopping taken into account
 - 10¹³ 10¹⁴ T at LHC

hydro model with local charge nearly available (!)

Vorticity (and/or Magnetic Field)

- angular momentum transfer to Λ polarization
 - spin orbit coupling
- magnetic field also possible Λ polarization source
 - opposite alignment of Λ and $\overline{\Lambda}$

detectable via parity violating Λ decay

A Polarization Measurements

successful example of precision improvement

- zero consistent with upper limit at 0.2% in 2007
- $\sqrt{s_{NN}}$ dependent polarization found by 2017

Non-Zero (and Large) Vorticity Found

- $\omega = (9 \pm 1) \times 10^{21} \, \text{s}^{-1}$
 - $\sqrt{s_{NN}}$ averaged
 - assuming T = 160 MeV
- magnetic field?
 - implied by Λ and $\overline{\Lambda}$ difference
 - though still zero consistent

Implications for Magnetic Field Search

- magnetic field not yet caught
- Iong-lived medium rotation; very promising source

higher statistics required (and planned) at LHC

Direct Probes of Intense Field

- must originate from initial stages
 - field life time ~ 0.1 fm/c
- must be electro-magnetic

- ideal probe: direct γ/γ* from pQCD processes
- good reference: γ/γ* from later stages
 - e.g. π^0 decay γ/γ^* (Dalitz di-electron)

Proposal 1. Direct Photon Anisotropy

- polarization tensor in magnetic field
 - modification factor to $\frac{E_1 E_2 dN_{l+l-}}{d^3 p_1 d^3 p_2 d^4 x} = \frac{\alpha^2}{2\pi^4 q^4} \frac{p_1^{\mu} p_2^{\nu} + p_2^{\mu} p_1^{\nu} \frac{q^2}{2} g^{\mu\nu}}{\exp(q^0/T) 1} \operatorname{Im} G_{\mathrm{R}}^{\mu\nu}(q;T)$
 - seemingly $v_2 \sim o(10^{-2})$

Y.Akamatsu, H.Hamagaki, T.Hatsuda, T.Hirano Phys. Rev. C 85, 054903 (2012)

obvious existence of other contributions to v_2

Proposal 2. Direct Photon Polarization

anisotropic decay w.r.t. magnetic field

feasibility study based on QED calculations

vacuum polarization tensors under magnetic field

- summation for infinite Landau levels
- photon momentum up to ~ GeV
- ref. K.-I. Ishikawa, K. Shigaki, et al., Int. J. Mod. Phys. A28, 1350100 (2013)
- anisotropy ~ o(10⁻¹)

Preliminary Analysis in ALICE Run/1

- intermediate mass region containing direct γ*
 - though combinatorial dominant
- Iow mass region as reference
 - Dalitz decay dominant

Preliminary Analysis in ALICE Run 1

- intermediate mass region containing direct γ*
 - though combinatorial dominant
- Iow mass region as reference
 - Dalitz decay dominant

Proposal 3. Femto-Spectrometer

- bending power *Bdl* ~ 10¹⁴ T×10⁻¹⁵ m
- \rightarrow bending angle ~ 3×10⁻²/p [rad/(GeV/c)]
- detectable as opening angle offset
 - e^{+}/e^{-} bent in opposite way around magnetic field axis
 - reaction axis from directional flow (v_1) in forward/backward
 - o(1) degree for o(1) GeV/c particles!

Not Even Preliminary

- Intermediate mass region containing direct γ*
 - though combinatorial dominant
- Iow mass region as reference
 - Dalitz decay dominant

Not Even Preliminary

- intermediate mass region containing direct γ*
 - though combinatorial dominant
- stronger deflection expected at low p_T

R. Tanizaki, master's thesis, Hiroshima U., 2015

Key Issue: Significance, *i.e.* Statistics

- marginal at best, in 2012–2016
 - 4 M.Sc. theses in 2013-2016
 - T.Hoshino, A.Tsuji, R.Tanizaki, Y.Ueda
 - 5 B.Sc. theses in 2012–2015
 - A.Tsuji, R.Tanizaki, Y.Ueda, A.Nobuhiro, K.Yamakawa
- higher statistics data available/coming in
 - 1 B.Sc. thesis in 2018
 - T.Osako; continuing, e.g. ATHIC 2018
- ALICE run 3 (2021–2023) even more promising
 - ×10 (di-)muons
 - ×100 minimum bias (di-)electrons

e and µ Reunion at LHC Energy

parallel approaches to same physics up to SPS

- muons at central (CMS) rapidity in fixed target exp.
 - e.g. NA38/50/51/60 dimuon spectrometer
- physics emphasis (and people) separated at RHIC
 - broad QGP physics with electrons in central barrel
 - focused topics, e.g. high mass/ $p_{\rm T}$ and spin, with muons
 - e.g. PHENIX "forward" arms
 - Iow momentum µ ID technically challenging
- reunion at LHC
 - low p_T muons within prolonged central Bjorken plateau
 - parallel and complementary approaches (again)

Muon Measurement at PHENIX

muon arms: 1.2 < |η| < 2.4
minimum p_T ~ 1.0 - 1.5 GeV/c

Muon Measurement at ALICE

- muon arm: $2.5 < |\eta| < 4.0$
- MFT: 2.5 < |η| < 3.6</p>
- minimum $p_{\rm T} \sim 0.5 \, {\rm GeV/c}$

New Relation between e and µ at LHC

two interesting regimes of quark-gluon phase

- exploration on QCD phase diagram

- new opportunity only at LHC energy (and above)
 - <u>forward enough</u> for (low p_T) muon measurement
 - e.g. |y| above ~ 3.4 for $p_T < 0.25 \text{ GeV/c}$, p > 4 GeV/c
 - not too forward for "central" physics
 - y up to ~ 4 at LHC (~ 2 at RHIC)

Muon Forward Tracker (2021–)

Another Obvious Stage: RHIC BES-II

2019–2021, STAR only √s_{NN} = 7.7–19.6 GeV, 3.0–7.7 GeV (fixed target)

STAR starting to look into deflection

Summary, Conclusions, and Remarks

- wide range of interests; not only LPV/CME(/CVE)
- field time structure: key for physical significance
 - longer-lived participant component in "perfect fluid"?
- proposals of experimental detection approaches
 - seemingly feasible, statistics permitting
 - simulations and real data analysis
 - direct photon polarization
 - femto-spectrometer
- high prospects in near-future high statistics data
 - both muons and electrons in ALICE run 3 (2021–2023)
 - RHIC BES-II (2019-2021) at STAR

