生成粒子の集団運動流(フロー) からみる高エネルギー原子核衝突

2008年6月16日@第3回Heavy Ion Pub、名古屋

Introduction

C.NONAKA

How to find the QGP Relativistic Heavy Ion Collision

Schematic sketch

collision thermalization hydrodynamic hadronization freeze-out

expansion

- Difficulties
 - Complicated process
 - initial state hydrodynamic expansion hadronization

freeze-out

•QGP signature ?

hadron spectra two particle correlations flow (radial, elliptic, direct) fluctuation (charge, multiplicity) electromagnetic probes.....

C.NONAKA

QGP on the Earth

Relativistic Heavy Ion Collision

1987	BNL-AGS	Si	5
1987	CERN-SPS	S	20
1992	BNL-AGS	Au	4
1994	CERN-SPS	Pb	17
2000	BNL-RHIC	Au +Au	200
2010	CERN-LHC	Pb +Pb	5600

RHIC: Energy Frontier

C.NONAKA

RHIC Run History

run	year	species	$\sqrt{s_{NN}}$ GeV
1	2000	Au+Au	130
2	2001/02	Au+Au	200
		p+p	200
3	2002/03	d+Au	200
		p+p	200
4	2003/04	Au+Au	200
		Au+Au	62
		p+p	200
5	2004/05	Cu+Cu	200,62,22
		p+p	200
6	2006	p+p	62
7	2006/07	Au+Au	200
8	2007/08	d+Au	200

http://www.agsrhichome.bnl.gov/RHIC/Runs/ heavy ion collision

- energy frontier
- p+p : baseline
- d+Au: initial vs. final
- Cu+Cu: system size
- Energy dependence

PHENIX, STAR, PHOBOS, BRAHMS

C.NONAKA

Phenomenological Analyses

C.NONAKA

Phenomenological Models (II)

intermediate P_{T}	high P _T	
2 < <i>P</i> _T < 4~6 GeV	4~6 < <i>P</i> _T GeV	
el	- 1	
Model		
Recombination Model		
Particle spectraHadron ratios		
 Collective flow Nuclear modification 	Perturbative QCD	
factors	Nuclear modification factorsJets in medium	
	intermediate P_T $2 < P_T < 4~6 \text{ GeV}$ of Model Model Recombination Model •Particle spectra •Hadron ratios •Collective flow •Nuclear modification factors	

C.NONAKA

Collective Flow at RHIC

Radial flow

Elliptic flow

Higher harmonics, v_{4} , v_{6}

Directed flow

Collective Flow at RHIC

Radial flow

- Elliptic flow
- Higher harmonics, v_{4} , v_{6}

Directed flow

Data

 $P_{\rm T}$ spectra, $m_{\rm T}$ spectra

Models

- Hydro inspired model ex. blast wave model
- Hydrodynamic model
- Recombination model

- Kinetic freezeout
 temperature
- Hadronization
 mechanism

Freezeout Temperature

Heavy Ion Pub

Statistical-Thermal Model

C.NONAKA

m_T Distributions

$T_{chem} \neq T_{kin}$

C.NONAKA

Multi Strange Particles

▲ π,K,p,Λ *T*_{chem}=160~170 MeV *T*_{kin}~100 MeV

 Multi strange particles
 *T*_{kin}~170 MeV
 Small cross section
 Information just after phase transition

Parameterization by a simple model Detailed analyses: ex. Relativistic hydrodynamic model

C.NONAKA

Collective Flow at RHIC

Radial flow

Elliptic flow

Higher harmonics, v₄, v₆
Directed flow

Data

- elliptic flow
- *vs.* P_{T} , rapidity, multiplicity system size, collision

energy

- fluctuations
- Models
 - Hydrodynamic model
 - Recombination model

Hydrodynamic Models

Assumptions (for multiple particle production)

Success of Hydro at RHIC

V2 vs multiplicity

C.NONAKA

ReCo+Fragmentation Model

Duke-Minnesota-Osaka ReCo vs. Fragmentation

phase space density of partons

Quark Number Scaling

New Discoveries at RHIC, April 2005

Strongly Interacting (coupled) Quark-Gluon Plasma: sQGP

From Theory

Nuclear Physics A 750 (2005) : Quark-Gluon Plasma New Discoveries at RHIC:

- T.D.Lee, M.Gyulassy, L.McLerran, E.Shuryak, B.Mueller, X-N.Wang, H.Stocker, J.-P.Blaizot and F.Gelis, N.P.Samios
- Color Glass Condensate
- Hydrodynamic flow
- Jet quenching
- Recombination model
- Viscosity

From experiment

Nuclear Physics A 757 (2005) First three year of operation of RHIC PHENIX, STAR, BRAHMS, PHOBOS

Collective Flow at RHIC

Radial flow

Elliptic flow

Migher harmonics, $v_{4,} v_{6}$

Directed flow

sQGP

Data

- elliptic flow
- vs. P_{T} , rapidity, multiplicity
- system size, collision energy
- fluctuations
- Models
 - Hydrodynamic model
 - Recombination model

- Early time thermalization
- Equation of states
- Initial conditions
- Viscosity effect
- Resonances, hadron structure

Hydrodynamic Model

C.NONAKA

Success of Hydro at RHIC

C.NONAKA

Centrality Dependence

Rapidity Dependence

Forward/backward rapidity

Freezeout & Final State Interactions

Rapidity Dependence

Centrality Dependence

Au+Au 200 AGeV PHOBOS

у

Х

Perfect Fluid at RHIC?

Quark Number Scaling

$$\mathbf{V}_{2}(P_{T}) = \left\langle \cos 2\Phi \right\rangle = \frac{\int d\Phi \cos 2\Phi d^{2}N / d^{2}P_{T}}{\int d\Phi d^{2}N / d^{2}P_{T}}$$

 v₂ ^{baryon} saturates at higher P_T
 at high P_T: fragmentation
 → v₂ ^{baryon} ~ v₂ ^{meson}

ϕ meson

PLB587,73(2004)

Quark Number Scaling

C.NONAKA

v₂ for Resonance Particles

$$v_2^{\text{full}} = r(P_T)v_2^{\text{QGP}} + (1 - r(P_T))v_2^{\text{HG}}$$

 $r(P_T)$ is determined by experiments and related to width of particles and cross section in the hadronic medium.

C.NONAKA

Hadron Structure : Exotic Particles

Collective Flow at RHIC

- Radial flow
- Elliptic flow

🥭 Data

- v_4 vs. P_T , centrality
- Higher harmonics, v₄, v₆ Models

Directed flow

- Hydrodynamic model
- Recombination model

🤩 Physics

- Equilibrium
- Quark number scaling

 V_4 as a function of P_T

Equilibration, Recombination

C.NONAKA

Collective Flow at RHIC

- Radial flow
- Elliptic flow
- Higher harmonics, $v_{4,} v_{6}$
- Directed flow

Data

- Directed flow
- vs. rapidity, collision

energy

letter Models

- Transport model
- Hydrodynamic model

Physics

- Stopping
- Matter compressibility

Directed Flow

Forward/Backward η?

Background in Other Physical observablesHBT

Jet structure

C.NONAKA

Success of

(ideal) hydrodynamic model and recombination model
Strongly coupled (interacting) QGP
Perfect fluid at RHIC?
Thermalization, viscosity....

Models:

Relativistic hydrodynamic model

• Initial conditions, equation of states, freezeout process

Recombination model

• Realistic parton distribution

LHC

Back up

C.NONAKA

Quark Recombination Model

$$\sum_{k=1}^{2} \frac{d^{3}N_{M}}{d^{3}p} \propto \int_{\Sigma_{f}} p^{\mu} d\Sigma_{\mu} \int_{0}^{1} dx w(r; xp_{T}) \overline{w}(r; (1-x)p_{T}) |\phi_{M}(x)|^{2}$$

$$\sum_{k=1}^{2} \frac{Baryons}{Baryons} E \frac{d^{3}N_{B}}{d^{3}p} \propto \int_{\Sigma_{f}} p^{\mu} d\Sigma_{\mu} \int_{0}^{1} dx \int_{0}^{1-x} dx' w(r; xp_{T}) w(r; x'p_{T}) \overline{w}(r; (1-x-x')p_{T}) |\phi_{B}(x, x')|^{2}$$

 ϕ_M, ϕ_B :light-cone wave function

rightarrow Equal momentum fraction(x=1/2,x=x'=1/3)

$$E\frac{d^{3}N_{M}}{d^{3}p} \cong C_{M}w^{2}(p_{T}/2), E\frac{d^{3}N_{B}}{d^{3}p} \cong C_{B}w^{3}(p_{T}/3)$$

 $C_{\rm M}, C_{\rm B}$:coalescence probabilities

C.NONAKA

Heavy Ion Pub

2

Hadrons <- Quarks</p>

 $w \propto 1 + 2v_{2,q} \cos 2\phi$ $v_{2,q}$:Elliptic flow of quarks

$$\overset{\sim}{=} \frac{Mesons}{\frac{d^2 N_M}{d\phi dp_T p_T}} \propto [1 + 2v_{2,q}\cos 2\phi]^2 \approx 1 + 4_{2,q}\cos 2\phi$$

→
$$v_{2,M}(p_T) \cong 2v_{2,q}(p_T/2), \quad v_{2,B}(p_T) \cong 3v_{2,q}(p_T/3)$$

Quark number scaling

3-D Hydrodynamic Model

C.NONAKA

Trajectories on the phase diagram

Lagrangian hydrodynamics

C.NONAKA

P_T Distributions

• Low P_T<2 GeV:thermal

$$\frac{1}{P_T}\frac{dN}{dP_T} \approx \exp(-P_T/T)$$

• High
$$P_T > 5^{\sim} 6 \text{ GeV}$$

: pQCD
$$\frac{1}{P_T} \frac{dN}{dP_T} \approx P_T^{-n}$$

- I

C.NONAKA

Hadron ratios

C.N.Q.NAKA

C.NQMAKA4

C.N.Q.NAKA

1. Large p/π ratio at high P_T

C.NONAKA

1. Large p/π ratio at high P_T

2. Difference in baryon and meson jet-suppression

C.NONAKA

2. Difference in baryon and meson jet-suppression

• Suppression in R_{CP}^{baryon} occurs at higher P_{T} than R_{CP}^{meson}

• R_{CP}^{baryon} should be the same as R_{CP}^{meson} .

3.Difference in baryon and meson elliptic flow

3.Difference in baryon and meson elliptic flow

PHENIXPRL98(2007)162301

Effect of Phase Transition

C.NONAKA