Direct Photons and Jet Conversions in Heavy Ion Collisions

Rainer Fries

Texas A&M University & RIKEN BNL

Heavy Ion Pub. Osaka University November 20, 2009 Thanks to my hosts at Nagoya University and to JSPS for a wonderful and productive stay in Japan!

in dis a tit

Overview

- Introduction : Electromagnetic probes
- Photon Sources
 - > Initial hard photons
 - > Thermal radiation
 - > Jet-medium interactions
- Flavor Conversions
- Elliptic Flow
- Photon correlations

Introduction

How to Investigate 10¹² K Matter?

- Look at the Ashes
 - > Soft bulk physics

- Look at projectiles
 - Hard probes
- Look at radiation
 - > Electromagnetic probes

Some objects are violently ejected from an explosion.

Electromagnetic Probes

- Real and virtual photons are perfect probes for nuclear matter.
 - > Quarks (and charged hadrons) couple to photons.
- Weak coupling $\alpha_{em} \leftrightarrow \alpha_{s}$:
 - > Photon mean free path ~ 100 fm in hot nuclear matter >> typical system size
 - > photon probes usually interact only once with the system
 - least possible disruption of the system by the probe
 - > but very low production rates
- What we can hope to measure is a current-current correlator.
 - > Photons couple to $W^{\mu\nu} \sim \left\langle \text{system} \middle| j^{\mu}_{\text{em}} j^{\nu}_{\text{em}} \middle| \text{system} \right\rangle$

Learning From Success: DIS

- Longitudinal structure of hadrons and nuclei can be revealed through deep inelastic scattering: $l + h \rightarrow l' + X$
 - > Probe: virtual photon in the initial state

$$\frac{d\sigma}{dE'd\Omega} = \left(\frac{\alpha\hbar}{2E\sin^2(\theta/2)}\right)^2 \left[\frac{2F_1(x,Q^2)}{M}\sin^2(\theta/2) + \frac{2MxF_2(x,Q^2)}{Q^2}\cos^2(\theta/2)\right]$$

Quarks exist!

- > Bjorken scaling ($\partial F_1 / \partial Q^2 = 0 = \partial F_2 / \partial Q^2$)
- > Callan-Gross relation ($F_2 = 2xF_1$)

Learning From Success: DIS

High Energy Nuclear Collisions

- Can we have a similarly successful program in Heavy Ion Physics?
 - > E.g.: measure the distribution function of quarks in a QGP?
- In principle yes ... but:

CYM & LGT

- Many sources: system is far from homogenous
 - > Initial prompt photons, pre-equilibrium phase, QGP, jets, hadronic phase
- Moving target: system changes radically as a function of time
 - > Photon signals are integrated over system history

Very Good Data Available

Photons in Nuclear Collisions

Classifying Photon Sources

HI Pub 2009

 Identify all important sources and develop a strategy to measure them individually.

Transverse momentum spectra of single direct photons

- > Hierarchy in momentum
- Reflects hierarchy in average momentum transfer (or temperature) in a cooling and diluting system)
- More sophisticated strategies:
 - Elliptic Flow
 - Correlations of photons with hadrons and jets

Initial Hard Photons

Prompt photons from initial hard scattering of partons in the nuclei.
Parton processes at leading order:

p+p collisions: important baseline to understand prompt photons in heavy ion collisions despite somewhat different initial state. pQC

0000000

Fragmentation Photons

pQC

- Photons can also fragment off jets created in initial collisions (Bremsstrahlung)
 - > Described by photon fragmentation function
 - Factorization:

$$d\sigma^{N+N \rightarrow \gamma} = \sum_{a,b,c} f_{a/N} \otimes d\sigma^{a+b \rightarrow c} \otimes f_{b/N} \otimes D_{c/\gamma}$$

$$PDF \qquad Parton cross section \qquad PDF \qquad FF$$

n process:

- At NLO, prompt hard and fragmentation photons can be treated consistently.
- Possible problem in nuclear matter:
 - Final state suppression for fragmenting photons but not for prompt photons?
 - > Induces uncertainty in direct photon baseline.

Initial Hard Photons

Prompt photon data in p+p well described by NLO calculations.

Initial Hard Photons: Nuclear Effects

- Do we have control over initial state effects for prompt photons in nuclear collisions?
 - > Isospin: correct blend of protons and neutrons in colliding nuclei is important $(\alpha_u = 4\alpha_d!)$
 - Shadowing and EMC effect: usually taken into account by modified parameterizations for nuclear PDFs (EKS ...); source of some uncertainty!
 - > Cronin effect: initial state scattering leading to broadening.
- Final state effects for fragmentation photons: most calculations assume final state parton is quenched until the photon is created.
 - > Which often means full quenching until the parton leaves the fireball!

Initial State Effects

Thermal Photons

- Annihilation, Compton and bremsstrahlung processes also occur between thermalized partons in a QGP.
 - > Emission Rate ($\beta = 1/T$, Π = polarization tensor)
- Hope to measure the temperature T (or its time-average).
- Resummation program (+ hard thermal loop) [Kapusta, Lichard & Seibert (1991)] [Baier et al. (1996)]

[Aurenche et al. (1996, 1998)]

More Thermal Photons

- A hot hadron gas shines as well. $\begin{bmatrix} -\frac{\pi^{+}}{l} & -\frac{\pi^{+}}{l} & -\frac{\mu^{0}}{l} \\ -\frac{\pi^{-}}{l} & -\frac{\mu^{0}}{l} & -\frac{\pi^{-}}{l} & -\frac{\pi^{+}}{l} & -\frac{\mu^{0}}{l} \\ -\frac{\pi^{-}}{l} & -\frac{\pi^{-}}{l} & -\frac{\mu^{0}}{l} & -\frac{\pi^{-}}{l} & -\frac{\mu^{0}}{l} \\ -\frac{\pi^{-}}{l} & -\frac{\mu^{0}}{l} & -\frac{\mu^{0}}{l} & -\frac{\mu^{0}}{l} \\ -\frac{\pi^{-}}{l} & -\frac{\mu^{0}}{l} & -\frac{\mu^{0}}{l} & -\frac{\mu^{0}}{l} \\ -\frac{\pi^{-}}{l} & -\frac{\mu^{0}}{l} & -\frac{\mu^{0}}{l} & -\frac{\mu^{0}}{l} \\ -\frac{\mu^{0}}{l} & -\frac{\mu^{0}}{l} & -\frac{\mu^{0}}{l} & -\frac{\mu^{0}}{l} & -\frac{\mu^{0}}{l} \\ -\frac{\mu^{0}}{l} & -\frac{\mu^{0}}{l} & -\frac{\mu^{0}}{l} & -\frac{\mu^{0}}{l} & -\frac{\mu^{0}}{l} & -\frac{\mu^{0}}{l} \\ -\frac{\mu^{0}}{l} & -\frac{\mu^{0}}{l} & -\frac{\mu^{0}}{l} & -\frac{\mu^{0}}{l} & -\frac{\mu^{0}}{l} & -\frac{\mu^{0}}{l} & -\frac{\mu^{0}}{l} \\ -\frac{\mu^{0}}{l} & -\frac{\mu^{0}}{l}$
 - Annihilation, creation and Compton-like processes with pions
 - > Vector mesons, baryons ...

[Kapusta, Lichard & Seibert (1991); ...]

From rates to spectra:

- > Plug rates into fireball evolution.
- > State of the art: hydrodynamics
- Challenge:
 - > Need reliable rates to test fireball models and extract temperatures
 - > But we would like to experimentally check rates first

REKEN BNL Rainer Fries

Summary So Far

[Turbide, Rapp & Gale, PRC (2004)]

[d'Enterria & Peressounko (2006)]

Sufficient to give a decent description of RHIC data.

RIKEN BNL Rainer Fries

But Wait There's More!

- Final state interactions of jets can give us additional photons.
- Compton, annihilation and Bremsstrahlung processes can also occur between a fast parton in a jet a medium parton.

- Elastic cross sections peak forward and backward.
 - In ~ 50% of cases the photon ends up with half of the jet momentum or more.
- Yield from these jet-to-photon conversions:

$$E_{\gamma} \frac{dN_{\gamma}}{d^3 p_{\gamma}} = \frac{\alpha \alpha_s}{8\pi^2} \int d^4 x \frac{2}{3} \left[f_q(p_{\gamma}) + f_q(p_{\gamma}) \right]^2 \left(\ln \frac{4E_{\gamma}T}{m^2} + C \right)$$

Riken BNL Rainer Fries

Jet-Medium Photons

Interesting features:

- Shape proportional to leading jet particle spectra (power law!)
- > Still strongly dependent on temperature.
- > An independent thermometer?
- How bright is this new source?
 - > Our first quick check:
- Can be as important as initial hard photons at intermediate p_T !

Jet-Medium Photons

- The bigger picture:
 - > Classify particles as either thermal or belonging to a (mini)jet: $f(p) = f_{th}(p) + f_{jet}(p)$
 - > Photons from these particles in kinetic theory:

$$\begin{aligned} f_{\gamma} \sim f_{th} \otimes f_{th} + f_{jet} \otimes f_{th} + f_{jet} \otimes f_{jet} \\ & \text{thermal photons} \quad \text{conversion photons} \quad \text{Did we forget these? No, irrelevant at present collider energies} \end{aligned}$$

- Careful: jets will lose energy before conversion!
- Leads to additional uncertainties of photon observables
 - > Additional constraints for jet quenching models?
- Most comprehensive scheme on the market: expanded AMY
 - > Induced gluon + photon radiation
 - Rate equations for jets

Adding Jet-Medium Photons

- Recent phenomenological analysis [Turbide, Gale, Frodermann & Heinz (2007)]
 - > AMY + thermal hadron gas + elastic jet-medium conversions
 - > Standard hydro fireball + initial state nuclear effects

But: little sensitivity to individual sources. How strong are conversion photons?

RIKEN BNL Rainer Fries

Adding Jet-Medium Photons

More Sensitivity: Nuclear Modification R_{AA}

[Turbide, Gale, Frodermann & Heinz (2007)]

- Jet-medium photons roughly make up for the loss through jet quenching
 - > Except for very large P_T .

"Flavor" Conversions

Hard Probes Revisited

- Simplest possible hard probe: measure opacity of the medium
 - Drag force on QCD jets or hadrons = jet quenching
 - Energy loss of the leading parton.
 - Related to broadening in transverse direction.
- Several models on the market.
 - Calculating energy loss through induced gluon radiation with different sets of assumptions.
 - AMY (full thermal QCD HTL calculation)
 - Medium modified higher twist (from DIS)
 - GLV, BDMPS in many varieties.
- Energy loss determined by the momentum transfer in collisions $\hat{q} = \frac{\mu^2}{\lambda}$
 - > Sensitive to transport coefficient
 - = momentum transfer squared per mean free path/collision.

RIKEN BNL Rainer Fries

 \mathcal{F}

Τ

Hard Probes Revisited

- How else can we use hard probes? Measure the flavor!
- Obviously: flavor of a parton can change when interacting with the medium.

 \mathcal{F}

x₁p

Τ

Ъ.

- Here: very general definition of flavor:
 - Gluons g
 - Light quarks q = u,d
 - Strange quarks s
 - Heavy quarks Q = c,b
 - Real photons, virtual photons (dileptons) γ
- Measure flavor conversion: Example: Schäfer, Wang, Zhang; HT formalism

RIKEN BNL Rainer Fries

Jet Chemistry

- Flavor of a jet here = identity of the leading parton.
 - > Flavor of a jet is NOT a conserved quantity in a medium.
 - > Only well-defined locally!
- The picture here:
 - Parton propagation through the medium with elastic or inelastic collisions
 - After any collision: final state parton with
 the highest momentum is the new leading parton ("the jet")
- Hadronization: parton chemistry \rightarrow hadron chemistry
 - Hadronization washes out signals; need robust flavor signals on the parton side.

[Sapeta, Wiedemann]

- Other mechanisms might also change hadron chemistry in jets:
- E.g. changed multiplicities
 RIKEN BNL Rainer Fries

Connection with Jet-Medium Photons

 Conversions into photons (and dileptons) corresponds to the jetmedium photon source discussed earlier.

[RJF, Müller, Srivastava] [Srivastava, Gale, RJF] [Zakharov], [Zhang, Vitev]

Unambiguous proof of conversion processes?

 Unlikely that single inclusive photon measurements at RHIC will deliver a clear answer

Another Application: Gluons and Protons

- Gluon ↔ (light) quark conversions [Ko, Liu, Zhang; Schäfer, Zhang, Wang; ...]
- Available in some jet quenching schemes (HT, AMY, ...)
- Relative quenching of gluons and quarks: color factor 9/4
 - > Not explicitly observed in data
 - Shouldn't be there in a system short mean free path!

- Ko et al: elastic g ⇔ q conversions
 - □ Lose 30% of quark jets at RHIC
 - enhance p/π ratio; need elastic cross sections × 4 to get p+p values
 - Dependence on fragmentation functions!

Why Could It Be Exciting?

- For chemistry, momentum transfer is not important (unless there are threshold effects)
- Rather: flavor conversions are sensitive to the mean free paths λ of partons in the medium.
- Complementary information, could help settle interesting questions
 - > Many interactions with small momentum transfer?
 - > Few scatterings with large momentum transfer?
- But: measurements will be challenging
 - Need particle identification beyond 6-8 GeV/c at RHIC, outside of the recombination region.

RIKEN BNL Rainer Fries

What Can Chemistry Tell Us?

Measure equilibrium or rate of approach to equilibrium.

Two Examples for Rare Probes

 Example 1: excess production of particles which are rare in the medium and rare in the probe sample

- Example: photons
- > Need enough yield to outshine other sources of N^{rare}.
- Example 2: chemical equilibration of a rare probe particle

- > Example: strangeness at RHIC
- Coupling of jets (not equilibrated) to the equilibrated medium should drive jets towards chemical equilibrium.

RIKEN BNL Rainer Fries

HI Pub 2009

Conversion Rates

Coupled rate equations for numbers of jet particles (flavors a, b, c, ...) in a fireball simulation.

$$\frac{dN^a}{dt} = -\sum_b \Gamma^{a \to b}(p_T, T)N^a + \sum_c \Gamma^{c \to a}(p_T, T)N^c$$

$$\Gamma = \frac{1}{2E_1} \int \frac{g_2 d^3 p_2}{(2\pi)^3 2E_2} \frac{d^3 p_3}{(2\pi)^3 2E_3} \frac{d^3 p_4}{(2\pi)^3 2E_4} f(p_2) [1 \pm f(p_4)] \\ \times \overline{|M_{12 \to 34}|^2} (2\pi)^4 \delta^{(4)} (p_1 + p_2 - p_3 - p_4) = \left\langle \overline{|M_{12 \to 34}|^2} \right\rangle$$

• Here: reaction rates from elastic $2 \rightarrow 2$ collisions

$$q + \overline{q} \Leftrightarrow g + g$$
$$q + g \Leftrightarrow g + q$$

$$q + \overline{q} \rightarrow \gamma + g$$
$$q + g \rightarrow \gamma + q$$

$$g + Q \Leftrightarrow Q + g$$
$$g + g \Leftrightarrow Q + \overline{Q}$$

Quark / gluon conversions

Photons and dileptons; inverse reaction negligible

Heavy quarks production?

- Need to compare to $2 \rightarrow 3$ processes.
- Non-perturbative mechanisms?

Results: Protons

- Use the model by Ko, Liu and Zhang:
 - > Rate equations plus energy loss.
 - Elastic channels; cross sections with K-factor
 - Longitudinally and transversely expanding fireball \succ
 - RHIC: T_i = 350 MeV @ 0.6 fm/c
 - LHC: $T_i = 700 \text{ MeV} @ 0.2 \text{ fm/c}$

• Use double ratios $\gamma_{p/\pi^{+}} = \frac{(p/\pi^{+})_{AA}}{(p/\pi^{+})_{pp}} = \frac{R_{AA}^{p}}{R_{AA}^{\pi^{+}}}$ to cut uncertainties from fragmentation functions. -Recombination regiora with conv with conv K = 4Au+Au @ 200 GeV w/o conv - w/o conv K = 0Pb+Pb Au+Au R^p_{AA}/R^{π}_{AA} R^{p}_{AA}/R^{π}_{AA} s^{1/2}_{NN} = 5.5 TeV $s_{NN}^{1/2} = 200 \text{ GeV}$ p/π^{+} Ratio 0.1 [Liu, RJF] [Ko, Liu, Zhang] 0 10 12 6 8 4 14 10 15 20 30 25 10 5 35 40 0 8 12 2 p_T (GeV/c) p₋ (GeV/c) p₋ (GeV)

Results: Strangeness

• Kaons: see expected enhancement at RHIC

Numerical Results: Heavy Quarks

- Additional threshold effect
- At RHIC: additional heavy quark production marginal
- LHC: not at all like strangeness at RHIC; additional yield small
 - > Reason: charm not chemically equilibrated at LHC
 - > Results in small chemical gradient between jet and medium charm
 - > Also: threshold effect

Elliptic Flow at High P_T

Elliptic Flow v_2

- Azimuthal anisotropy for finite impact parameter.
- Three different mechanisms:

	Initial anisotropy	Final anisotropy	Elliptic flow v_2	
Bulk	pressure gradient	collective flow	<i>v</i> ₂ > 0	
saturated hard probe	path length	quenching	<i>v</i> ₂ > 0	
rare hard P _T probe	path length	additional production	v ₂ < 0 RJF, PRL 96 (2006)]	

Photon Elliptic Flow

0.25

0.15

0.1

0.05

-0.05

 v_2^{γ}

 jet-frag.+jet-brem. N-N + jet-th + th-th

PHENIX, inclusive

0-20 %

7 8 3

0.2 inclusive (R+F) inclusive (F)

> 5 6

[Turbide, Gale, RJF]

20-40 %

5

6 7

- Have to add other photon sources with vanishing or positive v_2 .
 - > Almost perfect cancellation, $|v_2|$ small
- Status:
 - Large negative v_2 excluded by experiment
 - Large uncertainties from fireball model? \succ

Strangeness Elliptic Flow

- Strangeness as non-equilibrated probe at RHIC: additional strange quarks have negative v_2 .
- Expect suppression of kaon v₂ outside of the recombination region.

RIKEN BNL Rainer Fries

New Results from STAR

 Blast from the past: remember strangeness enhancement from the 1980s?

Correlations at High \textbf{P}_{T}

A New Playground: Correlations

Importance for Precision Measurements

Correlations with Photons

- "Gold Plated Measurement" for energy loss?
- Caution: this is again parton model thinking, not QCD. Additional photon sources + radiative corrections complicate the picture.

Correlations with Photons

 Dilution of kinematic correlation through different photon sources!

A New Twist on Correlations

- Instead of using photons to measure jet modification: use jets to measure photon sources.
- To disentangle photon sources measure associated photon spectrum opposite to a jet of known energy E_{T} .
- Photons opposite 10 and 20 GeV jets:

Concluding Remarks

- For precision probes we need precision tools: need for consistent integration of NLO hard processes + fragmentation with final state interactions.
 - > Need to address factorization issues.
- Back to the drawing board: study simple processes like DIS on nuclei.

$$E.g. \qquad \begin{array}{c} \begin{array}{c} q\\ q_{1}' \\ q_{1}' \\ q_{1+1}' \\ p_{0}' \\ P_{0}' \\ AP \\ y_{1}' \\ y$$

[Majumder, RJF & Müller, PRC (2008)]

- > Could make connections with transport description (e.g. diffusion equation for transverse momentum) $\nabla_L \phi = \frac{1}{\Lambda} \hat{q} \nabla_{q_T}^2 \phi$
- Understanding photons and understanding energy loss are very closely related.

RESEARCH Center Rainer Fries

Summary

- Electromagnetic probes are still a very promising tool.
- Solid understanding of different sources needed.
- Precision in both theory and experiment!
- Conversions of high- P_{T} particles in quark gluon plasma: a new idea
- Strangeness enhancement at high P_{T} .
- v₂, correlations
- What I haven't talked about (with apologies):
 - > Pre-equilibrium photons, dileptons, SPS, ...

THANKS

- Thanks to my collaborators:
 - > T. C. Awes, C. Gale, A. Majumder, B. Müller, D. K. Srivastava, S. Turbide
- Some slides borrowed from:
 - > C. Gale, J. Kapusta, G. Y. Qin, D. K. Srivastava

New Simulation of Hard Probes

Plans for the Near Future

- We develop a standardized test bed to simulate N jets/hard particles in a fireball.
 - > Part of a NSF project with R. Rodriguez, R.J. Fries, E. Ramirez
- Input:
 - > initial phase space distributions
 - > background (aka fireball)
 - > specifics of dynamics (energy loss, fragmentation)
- What it should do:
 - Evolution of particle distributions;
 - > (modified) fragmentation and hadronization
 - > analysis of results in terms of experimentally relevant observables

Propagating Particles in a Medium (PPM)

- Some results from the testing
 - Using vacuum fragmentation and GLV average energy loss

$$\Delta E = \frac{C_R \alpha_s}{4} \frac{\mu^2}{\lambda} L^2 \log E$$

Neutral pion R_{AA} vs PHENIX data

> Estimate
$$\hat{q} = \frac{\mu^2}{\lambda} \approx 2.5 \,\mathrm{GeV^2/fm}$$

Triggered away side fragmentation function for charged hadrons.

Propagating Particles in a Medium (PPM)

- Map functions
 - Example: emissivity for 8-10 GeV up-quarks going to the right, b=7.4 fm collision of Au ions.

Goals:

- Build a flexible test bed for hard and electromagnetic probes.
- Comprehensive, quantitative studies of observables.

- > photon/Z jet/hadron correlations at NLO accuracy.
- Understanding photon/Z jet/hadron correlations
 understanding electromagnetic sources and conversion
 processes.
- Eventually code can be made public and/or be made part of a larger effort (Techqm, JET)

RESEARCH CENTER Rainer Fries