Direct Photons and Jet **Conversions in Heavy** Don Collisions

Rainer Fries

Texas A&M University & RIKEN BNL

Heavy Ion Pub, Osaka University November 20, 2009

Thanks to my hosts at Nagoya University and to JSPS for a wonderful and productive stay in Japan!

Rainer Fries Hinder Fries Hinde

THE REAL PROPERTY

Overview

- **Introduction : Electromagnetic probes**
- **Photon Sources**
	- \triangleright Initial hard photons
	- \triangleright Thermal radiation
	- \triangleright Jet-medium interactions
- **Flavor Conversions**
- **Elliptic Flow**
- **Photon correlations**

Introduction

Г T

How to Investigate 10¹² K Matter?

- **Look at the Ashes**
	- \triangleright Soft bulk physics

- **Look at projectiles**
	- Hard probes
- **Look at radiation**
	- **Electromagnetic probes**

Some objects are violently ejected from an explosion.

Electromagnetic Probes

- Real and virtual photons are perfect probes for nuclear matter.
	- Quarks (and charged hadrons) couple to photons.
- Weak coupling $\alpha_{em} \ll \alpha_{\rm S}$:
	- \triangleright Photon mean free path ~ 100 fm in hot nuclear matter >> typical system size
	- \triangleright photon probes usually interact only once with the system
	- least possible disruption of the system by the probe
	- \triangleright but very low production rates
- What we can hope to measure is a current-current correlator.
	- Photons couple to $W^{\mu\nu} \sim \langle \text{system} | j_{\text{em}}^{\mu} j_{\text{em}}^{\nu} | \text{system} \rangle$

Learning From Success: DIS

- **E** Longitudinal structure of hadrons and nuclei can be revealed through deep inelastic scattering: $l + h \rightarrow l' + X$
	- \triangleright Probe: virtual photon in the initial state

$$
\frac{d\sigma}{dE'd\Omega} = \left(\frac{\alpha\hbar}{2E\sin^2(\theta/2)}\right)^2 \left[\frac{2F_1(x,Q^2)}{M}\sin^2(\theta/2) + \frac{2MxF_2(x,Q^2)}{Q^2}\cos^2(\theta/2)\right]
$$

Quarks exist!

- \triangleright Bjorken scaling (∂ $F_1/\partial Q^2 = 0 = \partial F_2/\partial Q^2$)
- \triangleright Callan-Gross relation ($F_2 = 2xF_1$)

Learning From Success: DIS

High Energy Nuclear Collisions

- Can we have a similarly successful program in Heavy Ion Physics?
	- \triangleright E.g.: measure the distribution function of quarks in a QGP?
- In principle yes … but:
- Many sources: system is far from homogenous
	- Initial prompt photons, pre-equilibrium phase, QGP, jets, hadronic phase
- Moving target: system changes radically as a function of time
	- \triangleright Photon signals are integrated over system history

Very Good Data Available

Photons in Nuclear Collisions

Classifying Photon Sources

I Identify all important sources and develop a strategy to measure them individually.

- **The Transverse momentum spectra of single direct photons**
	- \triangleright Hierarchy in momentum
	- Reflects hierarchy in average momentum transfer (or temperature) in a cooling and diluting system)
- **More sophisticated strategies:**
	- **Elliptic Flow**
	- \triangleright Correlations of photons with hadrons and jets

Initial Hard Photons

Prompt photons from initial hard scattering of partons in the nuclei. **Parton processes at leading order:**

 p+p collisions: important baseline to understand prompt photons in heavy ion collisions despite somewhat different initial state.

pQC

000000

Fragmentation Photons

גיג/

 DQ

- **Photons can also fragment off jets created in initial collisions** (Bremsstrahlung)
	- Described by photon fragmentation function
	- Factorization:

$$
d\sigma^{N+N\to\gamma} = \sum_{a,b,c} f_{a/N} \otimes d\sigma^{a+b\to c} \otimes f_{b/N} \otimes D_{c/\gamma}
$$

Parton process:
Port
error $f_{b/N}$
PDF
section

- At NLO, prompt hard and fragmentation photons can be treated consistently.
- **Possible problem in nuclear matter:**
	- \triangleright Final state suppression for fragmenting photons but not for prompt photons?
	- \triangleright Induces uncertainty in direct photon baseline.

RIKEN BNL Rainer Fries **HI Pub 2009** HI Pub 2009 **15**

Initial Hard Photons

Initial Hard Photons: Nuclear Effects

- Do we have control over initial state effects for prompt photons in nuclear collisions?
	- \triangleright Isospin: correct blend of protons and neutrons in colliding nuclei is important $(\alpha_{\rm u} = 4\alpha_{\rm d}!)$
	- \triangleright Shadowing and EMC effect: usually taken into account by modified parameterizations for nuclear PDFs (EKS …); source of some uncertainty!
	- \triangleright Cronin effect: initial state scattering leading to broadening.
- **Final state effects for fragmentation photons: most calculations** assume final state parton is quenched until the photon is created.
	- \triangleright Which often means full quenching until the parton leaves the fireball!

Initial State Effects

Thermal Photons

- Annihilation, Compton and bremsstrahlung processes also occur between thermalized partons in a QGP.
	- \triangleright Emission Rate (β = 1/T, Π = polarization tensor)
- **Hope to measure the temperature** T **(or its time-average).**

[Aurenche et al. (1996, 1998)]

AMY: complete leading order results [Arnold, Moore & Yaffe, JHEP (2001, 2002)]

More Thermal Photons

- A hot hadron gas shines as well. $-\frac{\pi^2}{\pi} \frac{m\lambda_{\text{max}}}{\rho^0} \frac{\pi^2}{\pi} \frac{\rho^0}{\pi^0} \frac{m\lambda_{\text{max}}}{\pi^0} \frac{m\lambda_{\text{max}}}{\rho^0}$
	- Annihilation, creation and Compton-like processes with pions
	- Vector mesons, baryons …

[Kapusta, Lichard & Seibert (1991); ...]

 $\frac{\pi^2}{\sigma^0} - \frac{\pi^2}{\pi^2}$ $-\frac{\pi^2}{\sigma^2}$ $-\frac{\pi^2}{\sigma^2}$ $-\frac{\pi^2}{\sigma^2}$ $-\frac{\pi^2}{\sigma^2}$ $\frac{1}{\rho^0}$ $\frac{1}{\rho^0}$ $\frac{1}{\rho^0}$ $\frac{1}{\rho^0}$ $\frac{1}{\rho^0}$ $\frac{1}{\rho^0}$ $\frac{1}{\rho^0}$ $\frac{1}{\rho^0}$ $\frac{1}{\rho^0}$ $\frac{1}{\rho^0}$

- **From rates to spectra:**
	- Need time evolution of the temperature over the system volume.
	- Plug rates into fireball evolution.
	- \triangleright State of the art: hydrodynamics
- **n** Challenge:
	- Need reliable rates to test fireball models and extract temperatures
	- \triangleright But we would like to experimentally check rates first

RIKEN BNL Rainer Fries 21

Summary So Far

[Turbide, Rapp & Gale, PRC (2004)] [d'Enterria & Peressounko (2006)]

Sufficient to give a decent description of RHIC data.

RIKEN BNL Rainer Fries **22**
Research Center Rainer Fries **22**

But Wait There's More!

[Zakharov (2004)]

- **Final state interactions of jets can give us additional photons.**
- Compton, annihilation and Bremsstrahlung processes can also occur between a fast parton in a jet a medium parton.

- **Elastic cross sections peak forward and backward.**
	- \triangleright In ~ 50% of cases the photon ends up with half of the jet momentum or more.
- Yield from these jet-to-photon conversions:

$$
E_{\gamma} \frac{dN_{\gamma}}{d^3 p_{\gamma}} = \frac{\alpha \alpha_s}{8\pi^2} \int d^4 x \frac{2}{3} \left[f_q(p_{\gamma}) + f_q(p_{\gamma}) \right] r^2 \left(\ln \frac{4E_{\gamma} T}{m^2} + C \right)
$$

RIKEN BNL Rainer Fries **HI Pub 2009** [RJF, Müller & Srivastava, PRL (2002)] 23

Jet-Medium Photons

n Interesting features:

- Shape proportional to leading jet particle spectra (power law!)
- Still strongly dependent on temperature.
- An independent thermometer?
- How bright is this new source?
	- \triangleright Our first quick check:
- Can be as important as initial hard photons at intermediate $p_T!$

Jet-Medium Photons

- **The bigger picture:**
	- Classify particles as either thermal or belonging to a (mini)jet: $f(p) = f_{th}(p) + f_{jet}(p)$
	- \triangleright Photons from these particles in kinetic theory:

$$
f_{\gamma} \sim f_{th} \otimes f_{th} + f_{jet} \otimes f_{th} + f_{jet} \otimes f_{jet}
$$

thermal conversion
plotons photons

 $\frac{dP_j(E,t)}{dt} = \sum_i \int d\omega \left[P_a(E+\omega,t) \frac{d\Gamma_{a\to j}(E+\omega,\omega)}{d\omega dt} \right]$

- Careful: jets will lose energy before conversion!
- Leads to additional uncertainties of photon observables
	- \triangleright Additional constraints for jet quenching models?
- Most comprehensive scheme on the market: expanded AMY
	- \triangleright Induced gluon + photon radiation
	- \triangleright Rate equations for jets

RIKEN BNL Rainer Fries [Jeon & Moore] $-P_j(E,t) \frac{d \Gamma_{j \to b}(E,\omega)}{d \omega dt} \Big]$, [Jeon & Moore]

Adding Jet-Medium Photons

- **Recent phenomenological analysis** [Turbide, Gale, Frodermann & Heinz (2007)]
	- AMY + thermal hadron gas + elastic jet-medium conversions
	- \triangleright Standard hydro fireball + initial state nuclear effects

But: little sensitivity to individual sources. How strong are conversion photons?

RIKEN BNL Rainer Fries 26

Adding Jet-Medium Photons

More Sensitivity: Nuclear Modification R_{AA}

[Turbide, Gale, Frodermann & Heinz (2007)]

- Jet-medium photons roughly make up for the loss through jet quenching
	- Except for very large P_T .

"Flavor" Conversions

Hard Probes Revisited

- Simplest possible hard probe: measure opacity of the medium
	- Drag force on QCD jets or hadrons = jet quenching
	- \triangleright Energy loss of the leading parton.
	- \triangleright Related to broadening in transverse direction.
- Several models on the market.
	- Calculating energy loss through induced gluon radiation with different sets of assumptions.
	- \triangleright AMY (full thermal QCD HTL calculation)
	- Medium modified higher twist (from DIS)
	- GLV, BDMPS in many varieties .
- **Energy loss determined by the momentum transfer in** collisions $\hat{q} = \frac{\mu^2}{2}$
	- \triangleright Sensitive to transport coefficient
		- = momentum transfer squared per mean free path/collision.

RIKEN BNL Rainer Fries 29

I F

Hard Probes Revisited

- How else can we use hard probes? Measure the flavor!
- Obviously: flavor of a parton can change when interacting with the medium.

000000

- **Here: very general definition of flavor:**
	- Gluons g
	- Light quarks q = u,d
	- \triangleright Strange quarks s
	- \triangleright Heavy quarks Q = c,b
	- Real photons, virtual photons (dileptons) γ
- Measure flavor conversions Example: Schäfer, Wang, Zhang; HT formalism

RIKEN BNL Rainer Fries

Jet Chemistry

- **Flavor of a jet here = identity of the leading parton.**
	- Flavor of a jet is NOT a conserved quantity in a medium.
	- Only well-defined locally!
- The picture here:
	- \triangleright Parton propagation through the medium with elastic or inelastic collisions
	- \triangleright After any collision: final state parton with the highest momentum is the new leading parton ("the jet")
- **Hadronization: parton chemistry** \rightarrow **hadron chemistry**
	- Hadronization washes out signals; need robust flavor signals on the parton side.

[Sapeta, Wiedemann]

- Other mechanisms might also change hadron chemistry in jets:
- RIKEN BNL Rainer Fries 31 E.g. changed multiplicities

Connection with Jet-Medium Photons

 Conversions into photons (and dileptons) corresponds to the jetmedium photon source discussed earlier.

[RJF, Müller, Srivastava] [Srivastava, Gale, RJF] [Zakharov], [Zhang, Vitev]

- **Unambiguous proof of conversion processes?**
	- \triangleright No, experimental situation not resolved
	- \triangleright Unlikely that single inclusive photon measurements at RHIC will deliver a clear answer

Another Application: Gluons and Protons

- Gluon ↔ (light) quark conversions [Ko, Liu, Zhang; Schäfer, Zhang, Wang; ...]
- Available in some jet quenching schemes (HT, AMY, …)
- **Relative quenching of gluons and** quarks: color factor 9/4
	- > Not explicitly observed in data
	- Shouldn't be there in a system short mean free path!

- Ko et al: elastic $q \leftrightarrow q$ conversions
	- □ Lose 30% of quark jets at RHIC
	- enhance p/π ratio; need elastic cross sections \times 4 to get p+p values
- p_{τ} (GeV/c) p_{τ} (GeV/c) p_{τ} (GeV/c) p_{τ} (GeV/c) p_{τ} (GeV/c) p_{τ} (GeV/c) Dependence on fragmentation

Why Could It Be Exciting?

- **For chemistry, momentum transfer is not important (unless** there are threshold effects)
- **Rather: flavor conversions are sensitive to the mean free paths** λ of partons in the medium.
- Complementary information, could help settle interesting questions
	- \triangleright Many interactions with small momentum transfer?
	- \triangleright Few scatterings with large momentum transfer?
- But: measurements will be challenging
	- \triangleright Need particle identification beyond 6-8 GeV/c at RHIC, outside of the recombination region.

RIKEN BNL Rainer Fries 34

What Can Chemistry Tell Us?

Measure equilibrium or rate of approach to equilibrium.

Two Examples for Rare Probes

■ Example 1: excess production of particles which are rare in the medium and rare in the probe sample

- \triangleright Example: photons
- \triangleright Need enough yield to outshine other sources of Nrare.
- Example 2: chemical equilibration of a rare probe particle

- Example: strangeness at RHIC
- \triangleright Coupling of jets (not equilibrated) to the equilibrated medium should drive jets towards chemical equilibrium.

RIKEN BNL Rainer Fries 36

Conversion Rates

■ Coupled rate equations for numbers of jet particles (flavors a, b, c, …) in a fireball simulation.

$$
\frac{dN^a}{dt} = -\sum_b \Gamma^{a \to b}(p_T, T)N^a + \sum_c \Gamma^{c \to a}(p_T, T)N^c
$$

$$
\Gamma = \frac{1}{2E_1} \int \frac{Q_2 d^3 p_2}{(2\pi)^3 2E_2} \frac{d^3 p_3}{(2\pi)^3 2E_3} \frac{d^3 p_4}{(2\pi)^3 2E_4} f(p_2) \left[1 \pm f(p_4)\right]
$$

$$
\times \left| M_{12 \to 34} \right|^2 (2\pi)^4 \delta^{(4)}(p_1 + p_2 - p_3 - p_4) = \left\langle \left| M_{12 \to 34} \right|^2 \right\rangle
$$

Here: reaction rates from elastic $2 \rightarrow 2$ collisions

$$
q + \overline{q} \leftrightarrow g + g
$$

$$
q + g \leftrightarrow g + q
$$

$$
q + \overline{q} \rightarrow \gamma + g
$$

$$
q + g \rightarrow \gamma + q
$$

$$
g + Q \leftrightarrow Q + g
$$

$$
g + g \leftrightarrow Q + Q
$$

Quark / gluon conversions Photons and dileptons; Heavy quarks production?

Photons and dileptons; inverse reaction negligible

- Need to compare to $2 \rightarrow 3$ processes.
- **Non-perturbative mechanisms?**

Results: Protons

- Use the model by Ko, Liu and Zhang:
	- \triangleright Rate equations plus energy loss.
	- Elastic channels; cross sections with K-factor
	- Longitudinally and transversely expanding fireball
		- RHIC: T_i = 350 MeV @ 0.6 fm/c
		- LHC: T_i = 700 MeV @ 0.2 fm/c

Use double ratios $\gamma_{p/\pi^+} = \frac{(p/\pi^+)^2 A A}{(p/\pi^+)} = \frac{P_{A} A}{p \pi^+}$ to cut uncertainties from fragmentation functions. **Recombination region** with conv - with conv $K=4$ Au+Au @ 200 GeV $-$ w/o conv $-$ w/o conv $K=0$ Pb+Pb Au+Au R_{AA}^{p}/R_{AA}^{π} R^P_{AA}/R^{π}_{AA} $s_{NN}^{1/2} = 5.5$ TeV $s_{NN}^{1/2} = 200 \text{ GeV}$ p/π ⁺ Ratio 0.1 [Ko, Liu, Zhang] $\left[\begin{matrix} \begin{matrix} 0 & 1 \end{matrix} & \begin{matrix} 0 & 0 \end{matrix} & \begin{matrix}$

 $R = \frac{1}{2}$

 $\overline{4}$

 12

14

 Ω

35 40

Results: Strangeness

EXECTS: SEE EXPECTED Enhancement at RHIC

Numerical Results: Heavy Quarks

- **Additional threshold effect**
- **At RHIC: additional heavy quark production marginal**
- **LHC: not at all like strangeness at RHIC; additional yield small**
	- \triangleright Reason: charm not chemically equilibrated at LHC
	- Results in small chemical gradient between jet and medium charm

Elliptic Flow at High P_T

Elliptic Flow v_2

^y ^z

- Azimuthal anisotropy for finite impact parameter.
- **E** Three different mechanisms:

Photon Elliptic Flow

0.25

 0.15

 $\overline{0}$.

 0.05

 -0.05

 v^{γ}_{2}

 $\frac{1}{2}$ iet-frag. +iet-brem $N-N + i$ et-th + th-th

0-20 $\%$

 783

 $\overline{4}$

 $0.2 \div \text{m}$ inclusive (R+F) inclusive (F) PHENIX, inclusive

> $\overline{5}$ $\overline{6}$

[Turbide, Gale, RJF]

20-40 %

40-60 %

6 7

 $\overline{5}$

- Have to add other photon sources with vanishing or positive v_2 .
	- Almost perfect cancellation, $|v_2|$ small

Status:

- Large negative v_2 excluded by experiment.
- Large uncertainties from fireball model?

Strangeness Elliptic Flow

- Strangeness as non-equilibrated probe at RHIC: additional strange quarks have negative v_2 .
- **Expect suppression of kaon** v_2 **outside of the recombination** region. Recombination taken into account

RIKEN BNL Rainer Fries 44

New Results from STAR

Blast from the past: remember strangeness enhancement from the 1980s?

Correlations at High P_T

A New Playground: Correlations

Importance for Precision Measurements

Correlations with Photons

- **E** "Gold Plated Measurement" for energy loss?
- Caution: this is again parton model thinking, not QCD. Additional photon sources + radiative corrections complicate the picture.

Correlations with Photons

Dilution of kinematic correlation through different photon sources!

A New Twist on Correlations

- Instead of using photons to measure jet modification: use jets to measure photon sources.
- To disentangle photon sources measure associated photon spectrum opposite to a jet of known energy E_T .
- Photons opposite 10 and 20 GeV jets:

Concluding Remarks

For precision probes we need precision tools: need for consistent integration of NLO hard processes + fragmentation with final state interactions.

 \triangleright Need to address factorization issues.

■ Back to the drawing board: study simple processes like DIS on nuclei.

 \triangleright E.g. q_i \mathbf{p}_a $p_{\scriptscriptstyle a}$ $\overline{y_{p+1}}$

[Majumder, RJF & Müller, PRC (2008)]

- \triangleright Could make connections with transport description (e.g. diffusion equation for transverse momentum) $\nabla_{\mu}\phi = \frac{1}{4}\hat{q}\nabla_{q_{\tau}}^2\phi$
- **Understanding photons and understanding energy loss are very** closely related.

RIKEN BNL Rainer Fries 52

Summary

- **Electromagnetic probes are still a very promising tool.**
- Solid understanding of different sources needed.
- **Precision in both theory and experiment!**
- **Conversions of high-P_T** particles in quark gluon plasma: a new idea
- Strangeness enhancement at high P_T .
- \bullet v₂, correlations
- What I haven't talked about (with apologies):
	- Pre-equilibrium photons, dileptons, SPS, ...

THANKS

- **Thanks to my collaborators:**
	- T. C. Awes, C. Gale, A. Majumder, B. Müller, D. K. Srivastava, S. Turbide
- Some slides borrowed from:
	- C. Gale, J. Kapusta, G. Y. Qin, D. K. Srivastava

y.

New Simulation of Hard Probes

Plans for the Near Future

- We develop a standardized test bed to simulate N jets/hard particles in a fireball.
	- \triangleright Part of a NSF project with R. Rodriguez, R.J. Fries, E. Ramirez
- **Input:**
	- \triangleright initial phase space distributions
	- \triangleright background (aka fireball)
	- \triangleright specifics of dynamics (energy loss, fragmentation)
- What it should do:
	- \triangleright Evolution of particle distributions;
	- \triangleright (modified) fragmentation and hadronization
	- analysis of results in terms of experimentally relevant observables

Propagating Particles in a Medium (PPM)

- Some results from the testing
	- Using vacuum fragmentation and GLV average energy loss

$$
\Delta E = \frac{C_R \alpha_s}{4} \frac{\mu^2}{\lambda} L^2 \log E
$$

Neutral pion R_{AA} vs PHENIX data

$$
\triangleright \quad \text{Estimate} \quad \hat{q} = \frac{\mu^2}{\lambda} \approx 2.5 \,\text{GeV}^2/\text{fm}
$$

 Triggered away side fragmentation function for charged hadrons.

Propagating Particles in a Medium (PPM)

- **Map functions**
	- Example: emissivity for 8-10 GeV up-quarks going to the right, b=7.4 fm collision of Au ions.

Goals:

- \triangleright Build a flexible test bed for hard and electromagnetic probes.
- \triangleright Comprehensive, quantitative studies of observables.

- \triangleright photon/Z jet/hadron correlations at NLO accuracy.
- Understanding photon/ Z jet/hadron correlations \Leftrightarrow understanding electromagnetic sources and conversion processes.
- Eventually code can be made public and/or be made part of a larger effort (Techqm, JET)

RIKEN BNL Rainer Fries 59