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  Some successful collaborations in nuclear physics in the past Thanks to my hosts at Nagoya University 
and to JSPS for a wonderful and 

productive stay in Japan! 
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Osaka University 
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Tokyo University 
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Overview 

  Introduction : Electromagnetic probes 

  Photon Sources 
  Initial hard photons 

  Thermal radiation 

  Jet-medium interactions 

  Flavor Conversions 

  Elliptic Flow 

  Photon correlations 
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Introduction 



How to Investigate 1012 K Matter?  

  Look at the Ashes 
  Soft bulk physics 

  Look at projectiles 
  Hard probes 

  Look at radiation 
  Electromagnetic probes 
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Some objects are violently 
ejected from an explosion. 

T ~ 270 K 
T ~ 1300 K 
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Electromagnetic Probes 

  Real and virtual photons are perfect probes for nuclear matter. 
  Quarks (and charged hadrons) couple to photons. 

  Weak coupling αem << αS: 
  Photon mean free path ~ 100 fm in hot nuclear matter >> typical system size 
  photon probes usually interact only once with the system 

  least possible disruption of the system by the probe 

  but very low production rates 

  What we can hope to measure is a current-current correlator. 
  Photons couple to  
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Learning From Success: DIS 

  Longitudinal structure of hadrons and nuclei can be revealed 
through deep inelastic scattering: 
  Probe: virtual photon in the initial state 

  Quarks exist! 
  Bjorken scaling (∂F1/∂Q2 = 0 = ∂F2/∂Q2) 
  Callan-Gross relation (F2 = 2xF1) 

x 



HI Pub 2009 9                Rainer Fries 

Learning From Success: DIS 

  Rigorous procedure to extract parton distributions                          
for protons and other hadrons. 

  Today: toward 3-d picture of hadrons 
  E.g. DVCS 

CTEQ6 
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High Energy Nuclear Collisions 

  Can we have a similarly successful program in Heavy Ion Physics? 
  E.g.: measure the distribution function of quarks in a QGP? 

  In principle yes … but: 

  Many sources: system is far from homogenous 
  Initial prompt photons, pre-equilibrium phase, QGP, jets, hadronic phase 

  Moving target: system changes radically as a function of time 
  Photon signals are integrated over system history 
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Very Good Data Available 
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Photons in Nuclear Collisions 
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Classifying Photon Sources 

  Identify all important                                                        
sources and develop a                                                                  
strategy to measure them                     
individually. 

  Transverse momentum spectra of single direct photons 
  Hierarchy in momentum  

  Reflects hierarchy in average momentum                                                   
transfer (or temperature) in a cooling                                                                    
and diluting system) 

  More sophisticated strategies: 
  Elliptic Flow 

  Correlations of photons with                                                                    
hadrons and jets 

Eγ	



Hadron Gas Thermal Tf 

QGP Thermal Ti 

“Pre-Equilibrium”? 

Jet Re-interaction √(Tix√s) 
Hard prompt 
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Initial Hard Photons 

  Prompt photons from initial hard scattering of partons in the 
nuclei. 

  Calculable in factorized QCD                                            
perturbation theory 

  p+p collisions: important baseline to understand prompt photons 
in heavy ion collisions despite somewhat different initial state. 

Compton Annihilation 

PDF 
Parton  
cross  
section 

PDF 

Parton processes at leading order: 



HI Pub 2009 15                Rainer Fries 

Fragmentation Photons 

  Photons can also fragment off jets created in initial collisions 
(Bremsstrahlung) 
  Described by photon fragmentation function 

  Factorization: 

  At NLO, prompt hard and fragmentation photons can be treated 
consistently. 

  Possible problem in nuclear matter:  
  Final state suppression for fragmenting photons but not for prompt 

photons?  

  Induces uncertainty in direct photon baseline. 

Parton process: 

PDF 
Parton  
cross  
section 

PDF FF 
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Initial Hard Photons 

  Prompt photon data in p+p well described by NLO calculations. 

  This seems like a safe                                 
baseline! 

Photon world data @ hadron colliders 

[Aurenche et al., PRD (2006)] 
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Initial Hard Photons: Nuclear Effects 

  Do we have control over initial state effects for prompt photons 
in nuclear collisions?  
  Isospin: correct blend of protons and neutrons in colliding nuclei is important 

(αu = 4αd !) 

  Shadowing and EMC effect:  usually taken into account by modified 
parameterizations for nuclear PDFs (EKS …); source of some uncertainty! 

  Cronin effect: initial state scattering leading to broadening. 

  Final state effects for fragmentation photons: most calculations 
assume final state parton is quenched until the photon is 
created. 
  Which often means full quenching until the parton leaves the fireball! 
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Initial State Effects 

  Shadowing: 

  Large uncertainties in                                           
nuclear gluon distribution at small x! 

  Estimated combined effect of                 
isospin and shadowing on initial                           
hard photons. 

  Isolation cuts can in principle                                                       
distinguish fragmentation photons. 

[Eskola et al., (1998, 2008)] 

[Srivastava @ HP06] 



Initial State Effects 
  Cronin et al. (1975): enhancement of hadron production                       

at moderate PT  in proton-nucleus interactions. 

  Initial state multiple  scattering leads to additional PT   

  Nicely explained for Drell-Yan as a higher twist                         
effect 

  After resummation: diffusion equation for                                                   
transverse  momentum distribution. 

  d+A at RHIC: 
  Effect might be small for photons. 

  Large (non-perturbative ?) effect for protons. 
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McGaughey, Moss, 
Peng (1999) 

[Majumder, Müller (2006)] 

[RJF (2003)] 
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Thermal Photons 

  Annihilation, Compton and bremsstrahlung processes also occur 
between thermalized partons in a QGP. 
  Emission Rate                                             

(β = 1/T, Π = polarization tensor) 

  Hope to measure the temperature T (or its time-average). 

  Resummation program (+ hard thermal loop) 

  AMY: complete leading order results 
[Arnold, Moore & Yaffe, JHEP (2001, 2002)] 

[Kapusta, Lichard & Seibert (1991)] 
[Baier et al. (1996)]  

[Aurenche et al. (1996, 1998)] 
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More Thermal Photons 

  A hot hadron gas shines as well. 
  Annihilation, creation and Compton-like                                                  

processes with pions 

  Vector mesons, baryons … 

  From rates to spectra:  
  Need time evolution of the temperature over the system volume. 

  Plug rates into fireball evolution. 

  State of the art: hydrodynamics 

  Challenge:  
  Need reliable rates to test fireball models and extract temperatures 

  But we would like to experimentally check rates first 

[Kapusta, Lichard & Seibert (1991); …] 
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Summary So Far 

  Thermal + hard photons  

  Sufficient to give a decent description of RHIC data.  

[Turbide, Rapp & Gale, PRC (2004)] [d’Enterria & Peressounko (2006)] 
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But Wait There’s More! 

  Final state interactions of jets can give us additional photons. 

  Compton, annihilation and Bremsstrahlung processes can also 
occur between a fast parton in a jet a medium parton. 

  Elastic cross sections peak forward and backward. 
  In ~ 50% of cases the photon ends up with half of the jet momentum or 

more. 

  Yield from these jet-to-photon conversions: 

⇒ 
jet 

⇒ 
jet 

⊗ ⊗ 

[RJF, Müller & Srivastava, PRL (2002)] 
[Zakharov (2004)] 
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Jet-Medium Photons 

  Interesting features: 
  Shape proportional to leading jet particle spectra (power law!) 

  Still strongly dependent on temperature. 

  An independent thermometer? 

  How bright is this new source? 
  Our first quick check: 

  Can be as important as initial hard                                             
photons at intermediate pT ! 

FMS PRL 90 (2003) 
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Jet-Medium Photons 

  The bigger picture:  
  Classify particles as either thermal or belonging to a (mini)jet: 

  Photons from these particles in kinetic theory: 

  Careful: jets will lose energy before conversion!  

  Leads to additional uncertainties of photon observables  
  Additional constraints for jet quenching models? 

  Most comprehensive scheme on the market: expanded AMY  
  Induced gluon + photon radiation 

  Rate equations for jets 

thermal  
photons 

conversion  
photons 

Did we forget these? No, irrelevant at 
present collider energies 

[Jeon & Moore] 
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Adding Jet-Medium Photons 

  Recent phenomenological analysis  
  AMY + thermal hadron gas + elastic jet-medium conversions 

  Standard hydro fireball + initial state nuclear effects 

  Good description of RHIC single inclusive direct photon spectra. 

  But: little sensitivity to individual sources. How strong are 
conversion photons? 

[Turbide, Gale, Frodermann & Heinz (2007)] 
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Adding Jet-Medium Photons 

  More Sensitivity: Nuclear Modification RAA 

  Jet-medium photons roughly make up for the loss through jet 
quenching 
  Except for very large PT. 

[Turbide, Gale, Frodermann & Heinz (2007)] 
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“Flavor” Conversions 



Hard Probes Revisited 

  Simplest possible hard probe: measure opacity of the medium 
  Drag force on QCD jets or hadrons = jet quenching 
  Energy loss of the leading parton. 
  Related to broadening in transverse direction. 

  Several models on the market. 
   Calculating energy loss through induced gluon radiation                                                      

with different sets of assumptions. 

  AMY (full thermal QCD HTL calculation) 

  Medium modified higher twist (from DIS) 

  GLV, BDMPS in many varieties . 

  Energy loss determined by the momentum  transfer in                                    
collisions 
  Sensitive to transport coefficient                    

 = momentum transfer squared per mean free path/collision. 
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I F 
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Hard Probes Revisited 

  How else can we use hard probes? Measure the flavor! 

  Obviously: flavor of a parton can change when interacting with 
the medium. 

  Here: very general definition of flavor: 
  Gluons g 

  Light quarks q = u,d 
  Strange quarks s 

  Heavy quarks Q = c,b 

  Real photons, virtual photons (dileptons) γ 

  Measure flavor conversions → jet chemistry 

I F 

Example: Schäfer, Wang, Zhang; 
HT formalism 
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Jet Chemistry 

  Flavor of a jet here = identity of the leading parton.  
  Flavor of a jet is NOT a conserved quantity in a medium. 

  Only well-defined locally! 

  The picture here:  
  Parton propagation through the medium with                                                                                             

elastic or inelastic collisions 

  After any collision: final state parton with                                                                                 
the highest momentum is the new leading parton (“the jet”) 

  Hadronization: parton chemistry → hadron chemistry 
  Hadronization washes out signals; need robust flavor signals on the parton 

side. 

  Other mechanisms might also change hadron chemistry in jets: 
  E.g. changed multiplicities 

[Sapeta, Wiedemann] 
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 Connection with Jet-Medium Photons 

  Conversions into photons (and dileptons) corresponds to the jet-
medium photon source discussed earlier.  

  Unambiguous proof of conversion processes? 
  No, experimental situation not resolved 

  Unlikely that single inclusive photon                    
measurements at RHIC will deliver a            
clear answer 

[RJF, Müller, Srivastava] 
[Srivastava, Gale, RJF] 
[Zakharov], …..  
[Zhang, Vitev] 

[Turbide, Gale, Frodermann, Heinz] 
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Another Application: Gluons and Protons 
  Gluon ↔ (light) quark conversions 

  Available in some jet quenching schemes (HT, AMY, …) 

  Relative quenching of gluons and                                             
quarks: color factor 9/4 
  Not explicitly observed in data 

  Shouldn’t be there in a system                                                                 with 
short mean free path! 

[Ko, Liu, Zhang; Schäfer, Zhang, Wang; …] 

  Ko et al: elastic g ↔ q conversions 
   Lose 30% of quark jets at RHIC 
   enhance p/π ratio; need elastic cross   

sections × 4 to get p+p values 
  Dependence on fragmentation 

functions! 
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Why Could It Be Exciting? 

  For chemistry, momentum transfer is not important (unless 
there are threshold effects) 

  Rather: flavor conversions are sensitive to the mean free paths 
λ of partons in the medium. 

  Complementary information, could help settle interesting 
questions 
  Many interactions with small momentum transfer?  
  Few scatterings with large momentum transfer? 

  But: measurements will be challenging 
  Need particle identification beyond 6-8 GeV/c at RHIC, outside of the 

recombination region. 
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What Can Chemistry Tell Us? 

  Measure equilibrium or rate of approach to equilibrium. 

  Low PT:  

  Intermediate PT:                                                                     
recombination, ridge vs jet etc. 
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Two Examples for Rare Probes 

  Example 1: excess production of particles which are rare in the 
medium and rare in the probe sample  

  Example: photons 
  Need enough yield to outshine other sources of Nrare. 

  Example 2: chemical equilibration of a rare probe particle 

  Example: strangeness at RHIC 
  Coupling of jets (not equilibrated) to the equilibrated medium should drive 

jets towards chemical equilibrium. 

jet photon 

g s 
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Conversion Rates 
  Coupled rate equations for numbers of jet particles (flavors a, b, 

c, …) in a fireball simulation. 

  Here: reaction rates from elastic 2 → 2 collisions 

  Need to compare to 2 → 3 processes.  

  Non-perturbative mechanisms? 

Photons and dileptons;  
inverse reaction negligible 

Heavy quarks production? Quark / gluon conversions 
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Results: Protons 

  Use the model by Ko, Liu and Zhang: 
  Rate equations plus energy loss. 

  Elastic channels; cross sections with K-factor 

  Longitudinally and transversely expanding fireball 
  RHIC: Ti = 350 MeV @ 0.6 fm/c 

  LHC: Ti = 700 MeV @ 0.2 fm/c 

  Use double ratios                                to cut uncertainties from 
fragmentation functions.  

[Ko, Liu, Zhang] [Liu, RJF] 

Recombination region 
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Results: Strangeness 
  Kaons: see expected enhancement at RHIC 

  Measure above the recombination region! 

  No enhancement at LHC 

  Too much initial strangeness! 

  Maybe it works with charm at LHC? 

Recombination 
region 
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Numerical Results: Heavy Quarks 
  Additional threshold effect 

  At RHIC: additional heavy quark production marginal 

  LHC: not at all like strangeness at RHIC; additional yield small 

  Reason: charm not chemically equilibrated at LHC 

  Results in small chemical gradient between jet and medium charm 

  Also: threshold effect 

LHC LHC 
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Elliptic Flow at High PT 
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Elliptic Flow v2 

  Azimuthal anisotropy for finite impact parameter. 

  Three different mechanisms: x
y z

Initial 
anisotropy 

Final anisotropy 

Elliptic flow v2 

Bulk pressure 
gradient 

collective flow v2 > 0 

saturated hard  

probe 

path length quenching v2 > 0 

rare hard  

PT probe 

path length additional 
production 

v2 < 0 

[Turbide, Gale & RJF, PRL 96 (2006)] 
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Photon Elliptic Flow 

  Have to add other photon sources                                              
with vanishing or positive v2. 
  Almost perfect cancellation, |v2| small 

  Status:  
  Large negative v2 excluded by experiment. 

  Large uncertainties from fireball model? 

[Liu, RJF] 

[Turbide, Gale, RJF] 

[Chatterjee, Frodermann, Heinz, Srivastava; …] 
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Strangeness Elliptic Flow 

  Strangeness as non-equilibrated probe at RHIC: additional 
strange quarks have negative v2. 

  Expect suppression of kaon v2 outside of the recombination 
region. 

[Liu, RJF] 

w/ conversions w/o conversions 

Recombination taken into account 
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New Results from STAR 

  STAR at QM 2009 

  Kaon enhancement seen                     
between 6 and 10 GeV/c. 

  A first signal for              
conversions? 

  Caution: p enhancement                                                           
too big. 

  Blast from the past: remember strangeness enhancement from 
the 1980s? 

[Liu, RJF, PRC (2008)] 
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Correlations at High PT 
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A New Playground: Correlations 

  Hadron-hadron correlations 
  Away-side jet extinct 

  Ridges and cones … 

Away side  
gone/diffuse 

STAR 

A+A 

p+p 

Broadening/Ridge on the near side 
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Importance for Precision Measurements 

  Quantitative fits  of      to data. 

  Different energy loss models give                                    different 
results. 

  Within a fixed model different                                            
observables give incompatible results. 

  Details matter! 
  Calibration (shadowing,                                 

Cronin effect) 

  Treatment of the initial                                                                                                                         
fireball 

  … 

HI Pub 2009 
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Armesto et al., arxiv:0907.0667 

[J. Nagle, HP 2008] 

               Rainer Fries 

[Formalism:  
Zhang, Owens, Wang2] 
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Correlations with Photons 

  Photon-hadron and photon-jet correlations                                 
can provide a handle on the initial energy of                                  
a jet before quenching. 

  “Gold Plated Measurement” for energy loss? 

  Caution: this is again parton model thinking, not QCD. Additional 
photon sources + radiative corrections complicate the picture. 

[Wang, Huang & Sarcevic (1996)] 

γ	
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Correlations with Photons 

  Dilution of kinematic correlation through different photon 
sources! 

  Some NLO effects have                                                                           
been studied  

[Qin, Ruppert, Gale, Jeon, Moore,(2008); (2009)] 

[Arleo et al. (2004)] 
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A New Twist on Correlations 

  Instead of using photons to measure jet modification: use jets 
to measure photon sources. 

  To disentangle photon sources measure associated photon 
spectrum opposite to a jet of known energy ET. 

  Photons opposite 10 and 20 GeV jets: 

[RJF @ DNP 2004] 
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Concluding Remarks 

  For precision probes we need precision tools: need for 
consistent integration of NLO hard processes + fragmentation 
with final state interactions. 
  Need to address factorization issues. 

  Back to the drawing board: study simple processes like DIS on 
nuclei. 
  E.g.  

  Could make connections with transport                                             
description (e.g. diffusion equation for transverse momentum) 

  Understanding photons and understanding energy loss are very 
closely related. 

[Majumder, RJF & Müller, PRC (2008)] 
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Summary 

  Electromagnetic probes are still a very promising tool. 

  Solid understanding of different sources needed. 

  Precision in both theory and experiment! 

  Conversions of high-PT particles in quark gluon plasma: a new idea 

  Strangeness enhancement at high PT. 

  v2, correlations 

  What I haven’t talked about (with apologies): 
  Pre-equilibrium photons, dileptons, SPS, … 
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THANKS 

  Thanks to my collaborators: 
  T. C. Awes, C. Gale, A. Majumder, B. Müller, D. K. Srivastava, S. Turbide 

  Some slides borrowed from:  
  C. Gale, J. Kapusta, G. Y. Qin, D. K. Srivastava 
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Backup 
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New Simulation of Hard Probes 
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Plans for the Near Future 

  We develop a standardized test bed to simulate N jets/hard 
particles in a fireball. 
  Part of a NSF project with R. Rodriguez, R.J. Fries, E. Ramirez 

  Input:  
  initial phase space distributions 

  background (aka fireball) 
  specifics of dynamics (energy loss, fragmentation)  

  What it should do:  
  Evolution of particle distributions;  

  (modified) fragmentation and hadronization 

  analysis of results in terms of experimentally relevant observables 



HI Pub 2009 58                Rainer Fries 

Propagating Particles in a Medium (PPM) 
  Some results from the testing 

  Using vacuum fragmentation and                                                                              
GLV average energy loss 

  Neutral pion RAA vs PHENIX data 

  Estimate   

  Triggered away side fragmentation function for charged 
hadrons.  

STAR preliminary 

Ch. pion with π0 trigger 
8-16 GeV trigger PT 

Direct photon trigger 

Direct prompt photon trigger 
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Propagating Particles in a Medium (PPM) 
  Map functions 

  Example: emissivity for 8-10 GeV up-quarks                                                                                   
going to the right, b=7.4 fm collision of Au ions. 

  Goals: 
  Build a flexible test bed for hard and                                              

electromagnetic probes. 

  Comprehensive, quantitative studies of                      
observables. 

  photon/Z – jet/hadron correlations at NLO accuracy. 

  Understanding photon/Z – jet/hadron correlations ↔ 
understanding electromagnetic sources and conversion 
processes. 

  Eventually code can be made public and/or  be made part of a 
larger effort (Techqm, JET) 


