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Very high multiplicity pp collisions 
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Figure 2

Two-particle correlation results in (a) Pb+Pb, (b) p+Pb, and (c) p+ p collisions at the LHC (55). In
Pb+Pb collisions there is a large cos(2��) correlation with peaks at �� = 0,⇡ that extend long-range
in pseudorapidity �⌘ (magenta curve). A similar feature is observed in p+Pb and p+ p collisions,
thought it does not dominate the overall correlations to the same degree.

ATLAS (57), and CMS (58)]. Here the experimental signatures were much stronger than in

p+ p collisions, and the race was on to repeat as many of the A+A measurements related to

collectivity as possible to determine whether the signals persisted in p+Pb. Experimenters at

RHIC immediately reexamined d+Au collision data at
p
sNN = 200 GeV from 2008 and found

similar patterns, though with a smaller flow signal relative to the non-flow backgrounds (59). To

date, nearly all observations in A+A collisions that provided strong evidence for the heavy ion

standard model “quark–gluon plasma as near-perfect fluid” have now been measured in p+Pb

and d+Au collisions (see Reference (60) for an excellent review). The notable exception to this

Jet quenching: The
suppression of high
transverse
momentum particle
and/or jet
production relative
to yields expected
from the number of
hard scatters in a
collision. statement is jet quenching, which is discussed in Section 5.1.

4.2. Instructive Measurements

In this section we discuss four particularly instructive measurements in small systems, each of

which tests a key aspect of extending the heavy ion standard model to such systems. These

measurements involve (a) multiparticle cumulants demonstrating that correlations exist among

the majority of emitted particles as opposed to a small subset, (b) manipulation of the col-

liding small nuclei to see whether the correlations scale as expected with initial geometry, (c)

particle-identified flow patterns to see whether they reflect a common velocity field of a fluid at

hadronization, and (d) higher moments of the flow patterns, including triangular and quadran-

gular flow.

4.2.1. Multiparticle cumulants. In a collision creating N particles, one can ask whether a given

two-particle correlation is indicative of correlations involving only a small subset of particles

M ⌧ N (as in the dijet case), or from M ⇡ N , that is, a feature of the bulk. Most non-

10
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The “ridge” in pp and AA collisions 

JHEP%09%(2010)%091%
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collective expansion 

Elliptic flow: 
cos(2Δϕ) 

Physical origin of pp ridge  
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“Smoking gun” of a strongly  
interacting QGP liquid! 
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LHC

RHICPHENIX	datasets	
√sNN	[GeV]	 U+U	 Au+Au	 Cu+Au	 Cu+Cu	 3He+Au	 d+Au	 p+Au	 p+p	

510	 �	
200	 �	 �	 �	 �	 �	 �	 �	 �	
62.4	 �	 �	 �	 �	
39	 �	 �	
19.6	 �	 �	 �	

§  In small collision systems, can we find 
some similar features of the heavy ion 
collisions case? 

§  Do these features indicate QGP 
formation? 

§  How can we interpret them based on our 
present understanding of the QGP? 

small systems F(η) of wounded quark 
model using PHOBOS d+Au 200GeV 

F(
η)
	

PRL	120,	062302	(2018)	
PRC	96,	064905	(2017)	

Nature	Physics	15,	214-220	(2019)	

PRC	97,	034901	(2018)	
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Near	side	long-range	correlaOon	is	observed	by	PHENIX	in	
d/3He+Au	collisions	
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Central Arms

FVTX-North

BBC-NorthBBC-South

|h| < 0.35

1 < h < 3-3 < h < -1

3.1 < h < 3.9-3.9 < h < -3.1

FVTX-South

Aud

A clear ridge is seen with all detector combinations, even for 𝚫h > 6.2

d+Au at 200 GeV: ridge evolution with Δη
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• Correlations in pp minbias data scaled by multiplicity
• Not subtracted - cited as a systematic uncertainty

PRC 95 (2017) 034910 Central p+Au
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J.Velkovska, Vanderbilt Nagoya, Feb 16, 2019
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Two model formalisms

SONIC AMPT

Initial conditions MC Glauber MC Glauber

Particle production N/A String melting

Expansion Viscous hydrodynamics Parton scattering

Hadronization Cooper-Frye Spatial coalescence/quark 
recombination

Final stage Hadron cascade Hadron cascade
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Hydrodynamic description (SONIC)
√sNN = 200 GeV, central collisions

23

������ �����

• ��������
• �
������

• �#%�# ��(CGC)

• ����
• ��

co
nv
ol
ut
io
n



��������
Geometrical	control	

N
or
be

rt
	N
ov
it
zk
y,
	s
Q
M
	

8	

Geometry	control	works:	
•  v2(He+Au)	~	v2(d+Au)		>	v2(p+Au)	

TheoreOcal	descripOon:	
•  Hydrodynamics	with	small	η/s	works!		
•  AMPT:	weakly	coupled	partonic	cascade	+	quark	coalescence	+	hadronic	

cascade	also	works	at	lower	pT	

24
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Elliptic flow

5

v2 is driven by the participant 
eccentricity ε2 defined by

∑ r2 cos(2φ)/∑ r2 =-ε2 cos(2ψ2)
∑ r2 sin(2φ) /∑ r2 =-ε2 sin(2ψ2)

Outgoing particles correlated with ψ2 : 
<exp(2iφ)> = v2 exp(2iψ2)
measured via the two-particle correlation 
<exp(2i(φ1-φ2))> = (v2)2 ∝ (ε2)2

The measured v2 scales like the rms ε2

Triangular flow

6

v3 is driven by the participant 
triangularity ε3 defined by

∑ r2 cos(3φ)/∑ r2 =-ε3 cos(3ψ3)
∑ r2 sin(3φ) /∑ r2 =-ε3 sin(3ψ3)

Outgoing particles correlated with ψ3 : 
<exp(3iφ)> = v3 exp(3iψ3)
measured via the two-particle correlation 
<exp(3i(φ1-φ2))> = (v3)2 ∝ (ε3)2

The measured v3 scales like the rms ε3:
v3 created by triangular fluctuations in the participant geometry

Alver Roland arXiv:1003.0194
talk by Burak Alver

AuAu
3Hed

Intrinsic Component
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Figure 5

Elliptic flow coe�cient v2 as a function of pT for di↵erent hadron species as measured in di↵erent small
systems: (a) p+ p at the LHC, (b) d+Au at RHIC, and (c) p+Pb at the LHC. Theory calculations
utilizing the hydrodynamic standard model are from Reference (80).

Figure 6

Experimental data for momentum anisotropies v2, v3, and v4 as a function of pT in (a) p+ p, (b) p+Pb,
and (c) Pb+Pb collisions at the LHC. Also shown are hydrodynamic standard model (superSONIC)
calculations that incorporate constituent quark Monte Carlo Glauber initial conditions, pre-equilibrium
dynamics, viscous hydrodynamics with ⌘/s = 1/4⇡, and hadronic scattering (81).

measurements in p+ p collisions at higher energies of up to 13.1 TeV revealed an even stronger

signal. However, for p+ p collisions of lower multiplicity, the non-flow contributions increase and

a reliable extraction of the flow signal becomes model dependent. ATLAS (55) and CMS (69)

14

arXiv:1801.03477v2
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Long Range Two Particle Correlation

15/09/29 Quark Matter 2015, Kobe, Japan 32

• Two Particle Correlation
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Nuclear	modificaOon	in	
centraliOes:	
•  Centrality	determined	

similarly	as	for	large	
systems	(PRC90,034902)	

•  p+Au	results	show	large	
centrality	dependence	

•  d+Au	results	agree	with	
p+Au	at	high-pT	

•  3He+Au	results	agree	
with	p+Au	and	d+Au	at	
high-pT	

•  At	moderate	pT	an	
ordering	is	seen	in	most	
central	collisions	

soon	in	PRC	 33



v2	at	Eixed	charged	multiplicity		
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9	

STAR	study	the	correlaOon	for	fixed	mulOplicity	rather	than	
centrality:	
•  v2	show	similar	trends	for	all	systems.		
•  v2	is	system	dependent	(shape).		
•  v2/ε2	(pT)	in	all	systems	scales	into	single	curve	–	iniOal	
geometry	maoers	
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