Particle production mechanisms in hadron collisions

Satoshi Yano Hiroshima University

Introduction

ヒッグス粒子を見つけなければ!

ヒッグス粒子を見つけなければ!

もしかしたら標準模型を超える物理に遭遇するかも!

B中間子が大量に生成するぜ!

ヒッグス粒子を見つけなければ!

もしかしたら標準模型を超える物理に遭遇するかも!

B中間子が大量に生成するぜ!

世界最高温度のQGPの研究が出来る!

QCD in pp at LHC

バックグランド

バックグランド

でも・・・

Particle production

• Factorization Theorem

$$d\sigma_{AB \to h_c X} = f_a \left(x_a, \mu_{PDF}^2 \right) \otimes f_b \left(x_b, \mu_{PDF}^2 \right) \otimes d\hat{\sigma}_{ab \to cx} \otimes D_c^{h_c} \left(z_c, \mu_{FF}^2 \right)$$

$$f_a \left(x_a, \mu_{PDF}^2 \right) \qquad z = \frac{P_c}{p_c}$$

$$D_c^{h_c} \left(z_c, \mu_{FF}^2 \right)$$

Particle production

Factorization Theorem

$$d\sigma_{AB \to h_c X} = f_a \left(x_a, \mu_{PDF}^2 \right) \otimes f_b \left(x_b, \mu_{PDF}^2 \right) \otimes d\hat{\sigma}_{ab \to cx} \otimes D_c^{h_c} \left(z_c, \mu_{FF}^2 \right)$$

Particle production

Factorization Theorem

$$d\sigma_{AB \to h_c X} = f_a \left(x_a, \mu_{PDF}^2 \right) \otimes f_b \left(x_b, \mu_{PDF}^2 \right) \otimes d\hat{\sigma}_{ab \to cx} \otimes D_c^{h_c} \left(z_c, \mu_{FF}^2 \right)$$

$$(a) = f_b \left(x_b, \mu_{PDF}^2 \right) \otimes f_b \left(x_b, \mu_{PDF}^2 \right) \otimes d\hat{\sigma}_{ab \to cx} \otimes D_c^{h_c} \left(z_c, \mu_{FF}^2 \right)$$

$$(a) = f_b \left(x_b, \mu_{PDF}^2 \right) \otimes f_b \left(x_b, \mu_{PDF}^2 \right) \otimes d\hat{\sigma}_{ab \to cx} \otimes D_c^{h_c} \left(z_c, \mu_{FF}^2 \right)$$

QCD subprocess

• Hard scattering in conventional pQCD

$$E\frac{d^{3}\sigma}{dp^{3}}(AB \rightarrow CX) = \frac{d^{3}\sigma}{p_{T}dp_{T}dyd\varphi} = \frac{1}{p_{T}^{2n_{active}-4}}F\left(\frac{p_{T}}{\sqrt{s}}\right)$$

 $- n_{\text{active}}$ is the number of fields participating to the hard process

$$-p_{T}/\sqrt{s} \propto x_{T}$$

(3)
$$2 \rightarrow 2$$
 sub-process
Jet or direct photon
 $n_{\text{active}} = 4 \rightarrow 2n_{\text{active}} - 4 = 4$

x_{T} scaling

$$\sqrt{s}^{n} E \frac{d^{3} \sigma}{dp^{3}} (AB \to CX) = \left(\frac{\sqrt{s}}{p_{T}}\right)^{n} F\left(\frac{p_{T}}{\sqrt{s}}\right) = \left(\frac{2}{x_{T}}\right)^{n} F'(x_{T}) = G(x_{T})$$

$$n = 2n_{active} - 4$$

$$x_T = \frac{2p_T}{\sqrt{s}}$$

x_{T} scaling

$$\sqrt{s}^{n} E \frac{d^{3} \sigma}{dp^{3}} (AB \to CX) = \left(\frac{\sqrt{s}}{p_{T}}\right)^{n} F\left(\frac{p_{T}}{\sqrt{s}}\right) = \left(\frac{2}{x_{T}}\right)^{n} F'(x_{T}) = G(x_{T})$$

$$n = 2n_{active} - 4$$
$$x_T = \frac{2p_T}{\sqrt{s}}$$

NOT depend on collision energy!

Direct hadron production

Meson production

Direct meson production $n_{\text{active}} = 5 \rightarrow 2n_{\text{active}} - 4 = 6$ $E \frac{d^3 \sigma}{dp^3} (AB \rightarrow CX) = \frac{1}{p_T^6} F\left(\frac{p_T}{\sqrt{s}}\right)$

Baryon production 3 1 (1) (4) (5) (6)

Direct baryon production $n_{\text{active}} = 6 \rightarrow 2n_{\text{active}} - 4 = 8$ $E \frac{d^3 \sigma}{dp^3} (AB \rightarrow CX) = \frac{1}{p_T^8} F\left(\frac{p_T}{\sqrt{s}}\right)$

Extraction of the exponent *n*

• From x_{T} scaling $\sqrt{s}^{n} E \frac{d^{3} \sigma}{dp^{3}} (AB \rightarrow CX) = G(x_{T})$ Constant for several collision energies
• G(x_{T}) is constant

$$\sqrt{s_1}^n E \frac{d^3 \sigma}{dp^3} (AB \to CX) = \sqrt{s_2}^n E \frac{d^3 \sigma}{dp^3} (AB \to CX)$$
$$n = -\frac{\ln \left[\sigma_1^{inv} \left(x_T, \sqrt{s_1} \right) / \sigma_2^{inv} \left(x_T, \sqrt{s_2} \right) \right]}{\ln \left(\sqrt{s_1} / \sqrt{s_2} \right)}$$

NOTE: $Vs_1 \sim Vs_2$ is better to cancel several higher order effects

Exponent n in experiment

• Exponent n is measured at 22.4 GeV to 1.8 TeV

Neutral meson measurement with the ALICE detector

ALICE @ LHC

- Central detectors
 - ITS: Particle DCA
 - TPC: Tracking + PID
 - TOF: PID
 - HMPID: PID
 - TRD: electron ID
 - EM Calorimeter: 5 MeV 80 GeV
- Forward detectors
 - Muon: Tracking muon ID

Photon reconstruction (1)

- PHOS
 - Lead Tungstate Crystal (PbWO₄)
 - Cell dimensions:
 - $\Delta\eta \times \Delta\varphi = 0.004 \times 0.004$
 - Energy resolution:
 - $\sigma_E / E = 1.8\% / E \oplus 3.3\% / \sqrt{E} \oplus 1.1\%$
 - $\eta < 0.12, \Delta \varphi = 60^{\circ}$
- EMCal
 - Shashlik calorimeter (leads/scintillator × 77)
 - Cell dimensions:
 - Energy resolution: 143×0.0143
 - •
 - $\sigma_{E} / E = 4.8\% / E \oplus 11.3\% / \sqrt{E} \oplus 1.7\%$ | $\eta < 0.67, \Delta \varphi = 100^{\circ}$

Photon reconstruction (2)

- Photon Conversion Method (PCM)
 - Select electron candidates with TPC dE/dx
 - Pair of electron and positron with large impact parameter
 - DCA between the pair (V0 finding)
 - Armenteros-Podolanski-Plot
- Performance
 - \circ | η |< 0.9, 0 < φ < 2 π
 - Purity > 99%

Data sample

- proton-proton @ 8 TeV (2012)
- Min-bunch crossing: 50 ns = 20M Hz
- The collision probability / BC @ ALICE: 1 5 %
- Minimum-bias trigger
 - Coincidence V0-A and V0-C
 - 76% efficiency for the inelastic cross section
 - $\sigma_{pp}^{MB} = 55.7 \text{ mb} (vdM \text{ scan technique})$
- PHOS-trigger
 - L0-trigger: $E_{th} = 4 \text{ GeV}$
 - Rejection factor to MB: ~10000
- EMCal-trigger
 - L0-trigger: E_{th} = 2 GeV
 - Rejection factor to MB: ~70
 - L1-trigger: E_{th} = 4 GeV
 - Rejection factor to MB: ~ 12000

Neutral meson reconstruction

- Event mixing for uncorrelated background
- Fit with gauss + low mass tail
- Paring two photons from PHOS / PCM / EMCal / PCM-EMCal hybrid

Results

Full corrected cross section

$$E\frac{d^{3}\sigma}{dp^{3}} = \frac{1}{2\pi p_{T}} \frac{\sigma_{pp}^{MB_{AND}}}{N_{evt}^{i}} \frac{\left(1 - F_{Secondary}\right)}{Br(h \rightarrow \gamma\gamma)} \frac{1}{Acc \cdot \varepsilon} \frac{\Delta N^{h}}{\Delta \eta \Delta \varphi}$$

Results: Cross section at 8 TeV

- 0.3 35 GeV/c π⁰ has been measured by combining all subsystems!
- The pQCD predictions which have been tuned with lower energy results overestimate the spectrum.

Exponent n

- The π⁰ is consistent with the jet @LHC energies
- The π⁰ is higher than the jet @ RHIC energies

- Almost all neutral pions are generated by the jet fragmentation @ LHC!
- On the other hand, neutral pions are generated by both jet fragmentation and direct hadron production @ RHIC!

Multiplicity dependence

The growth of high p_{T} region is larger than low p_{T} .

Multiplicity dependence

• The growth of high p_{T} region is larger than low p_{T} .

 The CR (Color Reconnection) model describes both high and low p_T growth.

Color reconnection (CR)

1 Multiple Parton Interactions

Color reconnection (CR)

1 Multiple Parton Interactions

2 Color connection

Color reconnection (CR)

1 Multiple Parton Interactions

2 Color connection

3 Color reconnection (CR)

Multiplicity dependence

• The growth of high p_{T} region is larger than low p_{T} .

 The CR (Color Reconnection) model describes both high and low p_T growth.

• The CR model describes both light and heavy hadrons growth.

Multiplicity dependence

Results: η to π^0 ratio

- $m_{\rm T}$ scaling violation! (6.2 σ)
- Radial flow?

Summary and conclusion

- Wide p_{T} range neutral pion cross section in pp collisions at several LHC energies have been measured with the ALICE detector.
- The direct hadron production mechanism can be ignored at LHC collisions energies. On the other hand at RHIC energies, it should be considered.
 - When we compare with the LHC and RHIC results, the differences should be considered.
- The CR model describes the multiplicity dependence of light and heavy hadrons.
 - The CR can not reproduce the ridge...
- The obvious m_{T} scaling violation has been measured.

LHC-Run1 pp results

x_{T} scaling

Multiplicity determination